Сумма разности квадратов двух последовательных натуральных чисел, и разности квадратов следующих двух последовательных натуральных чисел равно 86. Найдите эти числа если разности квадратов не отрицательное. ( )
До момента начала движения мотоциклиста автомобиль проехал x*t км, по формуле: V=S/t, где V - скорость, S - путь, t - время, следовательно S=V*t, по условию задачи это x*t мотоциклисту потребовалось времени до встречи t мот= d/y, где по условию задачи d - путь мотоциклиста до встречи, а у - скорость смотри формулу V=S/t => t+S/V Общее расстояние между пунктами M и N складывается из трех частей: путь автомобиля до момента движения мотоциклиста, он нам известен x*t путь мотоциклиста до встречи, по условию это d путь автомобиля от момента движения мотоциклиста до встречи с ним, он нам не известен, но может быть вычислен по формуле s=V*T, где V это скорость автомобиля, по условию - x T - это время движения автомобиля до встречи, оно равно времени движения мотоциклиста. Мы его вычислили t мот=d/y, т.о. неизвестный отрезок пути равен s=x*d/y общее расстояние между пунктами равно S(MN)=x*t+x*d/y+d
x*t км,
по формуле: V=S/t, где V - скорость, S - путь, t - время,
следовательно S=V*t, по условию задачи это x*t
мотоциклисту потребовалось времени до встречи t мот= d/y,
где по условию задачи d - путь мотоциклиста до встречи, а у - скорость
смотри формулу V=S/t => t+S/V
Общее расстояние между пунктами M и N складывается из трех частей:
путь автомобиля до момента движения мотоциклиста, он нам известен x*t
путь мотоциклиста до встречи, по условию это d
путь автомобиля от момента движения мотоциклиста до встречи с ним, он нам не известен, но может быть вычислен по формуле s=V*T,
где V это скорость автомобиля, по условию - x
T - это время движения автомобиля до встречи, оно равно времени движения мотоциклиста. Мы его вычислили t мот=d/y,
т.о. неизвестный отрезок пути равен s=x*d/y
общее расстояние между пунктами равно
S(MN)=x*t+x*d/y+d
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.