В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
amina555658
amina555658
14.03.2021 23:16 •  Алгебра

(t^2-t)/(4-4t);
(2a^2-8b^2)/(a^2-4ab+4b^2 )

Показать ответ
Ответ:
olgakazakova20oy0u8c
olgakazakova20oy0u8c
13.02.2022 14:08

1) x² - 2x - 48 = 0;

D = b² - 4ac;

D = (-2)²- 4 • 1 • (-48) = 4 + 192 = 196; √D = 14;

x = (-b ± √D)/(2a);

x1 = (2 + 14)/2 = 16/2 = 8;

x2 = (2 - 14)/2 = - 12/2 = -6;

x² - 2x - 48 (x - 8)(x + 6).

2) 2x²- 5x + 3 = 0;

D = (-5)² - 4 • 2 • 3 = 25 + 24 = 49; √D = 7;

x1 = (5 + 7)/4 = 12/4 = 3;

x2 = (5 - 7)/4 = -2/4 = -0,5;

2x² - 5x + 3 = 2(x + 0,5)(x - 3) = (2x + 1)(x - 3).

3) 3x² - 10x + 3 = 0;

D = (-10)² - 4 • 3 • 3 = 100 - 36 = 64; √D = 8;

x1 = (10 + 8)/6 = 18/6 = 3;

x2 = (10 - 8)/6 = 2/6 = 1/3;

3x² - 10x + 3 = 3(x - 1/3)(x - 3) = (3x - 1)(x - 3).

4) 5x² - x - 42 = 0;

D = (-1)^2 - 4 • 5 • (-42) = 1 + 840 = 841; √D = 29;

x1 = (1 + 29)/10 = 30/10 = 3;

x2 = (1 - 29)/10 = -28/10 = -2,8;

5x² - x - 42 = 5(x + 2,8)(x - 3) = (5x +14)(x - 3).

5) 3x² - 8x + 5 = 0;

D = (-8)^2 - 4 • 3 • 5 = 64 - 60 = 4; √D = 2;

x1 = (8 + 2)/6 = 10/6 = 5/3;

x2 = (8 - 2)/6 = 6/6 = 1;

3x² -8x + 5 = 3(x - 5/3)(x - 1) = (3x - 5)(x - 1).

6) 36x² - 12x + 1 = 0;

D = (-12)^2 - 4 • 36 • 1 = 144 - 144 = 0;

x1 = x2 = 12/72 = 1/6;

36x²- 12x + 1 = 36(x - 1/6)(x - 1/6) = 6(x - 1/6) * 6(x - 1/6) = (6x - 1)(6x - 1).

0,0(0 оценок)
Ответ:
kristinakomaro5
kristinakomaro5
14.07.2022 18:40
Алгоритм решения такой:
1) Находим координаты и длины векторов AB и AC.
2) Находим косинус угла между данными векторами.
3) С основного тригонометрического тождества находим синус.
4) Находим площадь - половина произведения двух сторон на синус угла между ними.
5) находим вектор p - результат векторного произведения векторов AB и AC
6) находим косинус угла между векторами p и AD

Решение:
\vec{AB}(-3,2,-2);\ \vec{AC}(6,4,0)
|\vec{AB}|=\sqrt{9+4+4}=\sqrt{17} \\|\vec{AC}|=\sqrt{36+16+0}=\sqrt{52}
cos(\phi)=\frac{\vec{AB}*\vec{AC}}{|\vec{AB}|*|\vec{AC}|}=\frac{-18+8+0}{\sqrt{52*17}}=-\frac{5}{\sqrt{221}}
Косинус угла фи отрицательный=> данный угол тупой и расположен во 2 координатной четверти=> его синус положительный.
sin(\phi)=\sqrt{1-cos^2(\phi)}=\sqrt{1-\frac{25}{221}}=\frac{\sqrt{196}}{\sqrt{221}}=\frac{14}{\sqrt{221}} \\S=0.5*|\vec{AB}|*|\vec{AC}|*sin(\phi)=\frac{\sqrt{17*52}*7}{\sqrt{221}}=7*2=14
\vec{AB} \times \vec{AC}=\begin{vmatrix} i & j & k\\ -3 & 2 & -2\\ 6 & 4 & 0 \end{vmatrix}=\\=i*(2*0-(-2)*4)-j*((-3)*0-(-2)*6)+k*((-3)*4-2*6)=8\vec{i}-12\vec{j}-24\vec{k} \\\vec{p}(8,-12,-24) \\|\vec{p}|=\sqrt{64+12^2+24^2}=28 \\\vec{AD}(3,-5,-4);\ |\vec{AD}|=\sqrt{9+25+16}=5\sqrt{2} \\ cos(\alpha)=\frac{\vec{p}*\vec{AD}}{|\vec{p}|*|\vec{AD}|}=\frac{24+60+4*24}{28*5\sqrt{2}}=\frac{9\sqrt{2}}{14}
ответ:
a) 14
б) \frac{9\sqrt{2}}{14}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота