Теплоход өзен ағысына қарсы 4км және өзен ағысымен 33 км жүзіп өтіп, барлық жолға 1 сағ уақыт жұмсады. Өзен ағысы 6,5 км/сағ болса теплоходтың тынық судағы жылдымдығын табыңдар.
1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
Объяснение:
1.Разложите на множители:
1) 144 – у²=(12-у)(12+у) 5) а²b² –???
2) 64х² – 49=(8х-7)(8х+7); 6) х¹⁸ – у²⁰=(x⁹-y¹⁰)(x⁹+y¹⁰)
3) 225х² – 121у²=(15х-11у)(15х+11у) 7) –16 + 100а⁶b⁸=(10a³b⁴-4)(a³b⁴+4)
4) 0,01m² – 0,0036n²=(0,1m-0.06n)(0.1m+0.06n)
2.Разложите на множители:
1) (5у – 8)²– 81=(5у – 8– 9)(5у – 8+ 9)=(5у – 17)(5у +1)
2) (8х – 3)² – (4х + 6)²=(8х – 3 – 4х - 6)(8х – 3+ 4х + 6)=(4x-9)(12x+3)
3.Решить уравнение:
1) х² – 169 = 0
(x-13)(x+13)=0 Произведение равно нулю, когда один из множителей равен нулю
x-13=0 или x+13=0
x=13 или x= -13. ответ: 13; 13.
2) 625 – 64у²= 0
(25-8y)(25+8y)=0
25-8y=0 25+8y=0
8y=25 8y= -25
y=3.125 y= -3.125
4. Докажите, что при любом натуральном n значение выражения (9n +8)² – 49 делится нацело на 3.
(9n +8)² – 49=(9n+8-7)(9n+8+7)=(9n+1)(9n+15)=3(9n+1)(3n+5)