1,75
Объяснение:
S = x1(1-x2) + x2(1-x3) + x3(1-x4) + x4(1-x5) + x5(1-x6) + x6(1-x7) + x7(1-x1)
При условии: x1; x2; x3; x4; x5; x6; x7 ∈ [0; 1]
Очевидно, что при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0 будет S = 0
Точно также, при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 1 будет S = 0
Так как выражение симметрично относительно переменных, то любую переменную можно заменить на любую другую.
Это значит, что максимум будет достигнут при равных значениях всех переменных.
Сумма будет максимальной при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0,5
S = 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 =
= 0,25*7 = 1,75
Воспользуемся формулой разности кубов:
Выносим за скобки общий множитель:
Уравнение распадается на два. Решаем первое:
Почленно разделим на :
Решаем второе уравнение:
Заметим в левой части основное тригонометрическое тождество:
Обе части уравнения домножим на 2:
Чтобы в левой части применить формулу синуса двойного угла:
Но так как синус любого угла принимает значения только из отрезка от -1 до 1, то последнее уравнение не имеет решение.
Значит, никаких других корней, кроме найденных ранее, исходное уравнение не имеет.
ответ:
1,75
Объяснение:
S = x1(1-x2) + x2(1-x3) + x3(1-x4) + x4(1-x5) + x5(1-x6) + x6(1-x7) + x7(1-x1)
При условии: x1; x2; x3; x4; x5; x6; x7 ∈ [0; 1]
Очевидно, что при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0 будет S = 0
Точно также, при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 1 будет S = 0
Так как выражение симметрично относительно переменных, то любую переменную можно заменить на любую другую.
Это значит, что максимум будет достигнут при равных значениях всех переменных.
Сумма будет максимальной при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0,5
S = 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 =
= 0,25*7 = 1,75
Воспользуемся формулой разности кубов:
Выносим за скобки общий множитель:
Уравнение распадается на два. Решаем первое:
Почленно разделим на :
Решаем второе уравнение:
Заметим в левой части основное тригонометрическое тождество:
Обе части уравнения домножим на 2:
Чтобы в левой части применить формулу синуса двойного угла:
Но так как синус любого угла принимает значения только из отрезка от -1 до 1, то последнее уравнение не имеет решение.
Значит, никаких других корней, кроме найденных ранее, исходное уравнение не имеет.
ответ: