Найдем область определения функции у = √(х - х ^ 2). Областью определения функции является выражение из под корня больше или равно 0. То есть получаем: x - x ^ 2 > = 0; - x ^ 2 + x > = 0; - x * (x - 1) > = 0; { x = 0; x - 1 = 0; Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем: { x = 0; x = 1; Отсюда получаем, что областью определения является промежуток 0 < x < 1. ответ: 0 < x < 1.
Диагональ делит тупой угол (120°) в соотношении 3:1. Значит, одна часть тупого угла составляет 30° = 120° : (3 + 1). Отсюда, три части составят 90°. Следовательно, диагональ перпендикулярна (⊥) двум сторонам параллелограмма и является одной из его высот.
Напротив угла 30° лежит меньшая сторона, напротив угла 60° - большая. Причём в таком прямоугольном треугольнике больший катет больше меньшего катета в 2 раза.
Пусть х - меньшая сторона параллелограмма, тогда 2х - большая сторона. Периметр равен 2*(х + 2х) = 6х = р, откуда мешьшая сторона х = р/6 большая сторона - р/3
Диагональ делит тупой угол (120°) в соотношении 3:1. Значит, одна часть тупого угла составляет 30° = 120° : (3 + 1). Отсюда, три части составят 90°. Следовательно, диагональ перпендикулярна (⊥) двум сторонам параллелограмма и является одной из его высот.
Напротив угла 30° лежит меньшая сторона, напротив угла 60° - большая. Причём в таком прямоугольном треугольнике больший катет больше меньшего катета в 2 раза.
Пусть х - меньшая сторона параллелограмма, тогда 2х - большая сторона.
Периметр равен 2*(х + 2х) = 6х = р, откуда
мешьшая сторона х = р/6
большая сторона - р/3
По теореме Пифагора считаем высоту (диагональ):