Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
(x^2)^2-2*x^2*8+8^2+2+3.5x^2-28-2=0
x^4-16x^2+64+2+3.5x^2-30=0
x^4-12.5x^2+36=0
t=x^2
t^2-12.5t+36=0
D=(-12.5)^2-4*1*36=156.25-144=12.25
t1=12.5+3.5/2=16/2=8
t2=12.5-3.5/2=9/2=4.5
x^2=8 x^2=4.5
x1= x3= корень из 4.5
x2=- x4= минус корень из 4.5
2. (1+x^2)^2+0,5*(1+x^2)-5=0
1^2+2*1*x^2+(x^2)^2+0.5+0.5x^2-5=0
1+2x^2+x^4+0.5+0.5x^2-5=0
x^4+2.5x^2-3.5=0
t=x^2
t^2+2.5t-3.5=0
D=(2.5)^2-4*1*(-3.5)=6.25+14=20.25
t1=-2.5+4.5/2=1
t2=-2.5-4.5/2=-3.5
x=корень из 1 x= корень из - 3.5
x1=1
x2=-1
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность: