Три числа, из которых третье равно 18, образуют геометрическую прогрессию. Если вместо 18 взять число 16, то эти числа составляют арифметическую прогрессию. Найдите эти числа.
Мы знаем, что помимо положительных чисел, меньше нуля существуют еще и отрицательные числа.
Поэтому, при сложении отрицательного и положительного числа, всегда из положительного числа вычитается отрицательное, то есть, наглядно первый пример можно преобразовать как:
, тогда становится понятнее логика сложения отрицательного с положительным числом.
Второй пример аналогичен первому: если из положительного числа, то есть 3, вычесть отрицательное число, то есть 5, получим как раз -2: .
Пойдем ниже, в третьем примере из положительного числа вычитают большее отрицательное число. Поэтому в таких случаях запись можно преобразовать как: , то есть, мы из отрицательного числа вычитаем положительное число и заносим эту операцию над двумя числами в скобки со знаком "минус".
Четвертый и пятый пример аналогичны первому, когда мы можем представить запись в виде:
То есть, если число со знаком "+" больше числа со знаком "-", мы имеем право переписать запись в виде обычного вычитания из большего числа меньшее, где получим положительное число в ответе.
А 16 км В
> х км/ч ? (х + 9) км/ч <
1,5 ч = 90 мин = 90/60 = 3/2 ч
20 мин = 20/60 = 1/3 ч
Уравнение:
х · (3/2 + 1/3) + (х + 9) · 1/3 = 16
3/2х + 1/3х + 1/3х + 9/3 = 16
9/6х + 2/6х + 2/6х + 3 = 16
13/6х = 16 - 3
13/6х = 13
х = 13 : 13/6
х = 13/1 · 6/13
х = 6 (км/ч) - скорость пешехода
6 + 9 = 15 (км/ч) - скорость велосипедиста
ответ: 6 км/ч и 15 км/ч.
Проверка:
6 · (3/2 + 1/3) = 6 · 11/6 = 66/6 = 11 км - пройдёт пешеход за 1 ч 50 мин
15 · 1/3 = 15/3 = 5 км - проедет велосипедист за 20 мин
11 + 5 = 16 км - расстояние между пунктами
Объяснение:
Мы знаем, что помимо положительных чисел, меньше нуля существуют еще и отрицательные числа.
Поэтому, при сложении отрицательного и положительного числа, всегда из положительного числа вычитается отрицательное, то есть, наглядно первый пример можно преобразовать как:
, тогда становится понятнее логика сложения отрицательного с положительным числом.
Второй пример аналогичен первому: если из положительного числа, то есть 3, вычесть отрицательное число, то есть 5, получим как раз -2: .
Пойдем ниже, в третьем примере из положительного числа вычитают большее отрицательное число. Поэтому в таких случаях запись можно преобразовать как: , то есть, мы из отрицательного числа вычитаем положительное число и заносим эту операцию над двумя числами в скобки со знаком "минус".
Четвертый и пятый пример аналогичны первому, когда мы можем представить запись в виде:
То есть, если число со знаком "+" больше числа со знаком "-", мы имеем право переписать запись в виде обычного вычитания из большего числа меньшее, где получим положительное число в ответе.