Последовательность точек xn R на числовой оси называется сходящейся, если существует такая точка M 0, что для для любого как угодно малого положительного числа ε > 0 найдётся для этой последовательности номер, зависящий от этого ε, такой, что для всех последующих номеров расстояние между членами числовой последовательности и точкой M0 будет меньше этого ε: (2.1) Это означает, что в любую как угодно малую окрестность точки М0 попадают все точки этой последовательности, начиная с некоторой (и тем самым вне этой окрестности остаётся лишь конечное число точек последовательности). Расстояние между точками числовой оси было определено в курсе аналитической геометрии. Точка М0 называется пределом последовательности xn, что обозначается символом . Если для заданной последовательности не существует точки М0, для которой было бы справедливо свойство (2.1), то последовательность называется расходящейся. Для точек числовой оси расстояние между двумя любыми её точками определяется соотношением d (x, y) = | x - y |. Последовательность действительных чисел {x1, x2, x3,…,xn,…} сходится к числу х, если
Неравенство | xn - x | < ε можно записать в виде x - ε < xn < x + ε, n > N и n > N все точки числовой последовательности будут находиться в указанном интервале.
Так как .Скорость течения реки равна 3 км/ч, а скорость лодки х км/ч
Тогда скорость по течению реки (х+3)км/ч
скорость против течения реки (х-3)км/ч
10/(х+3)ч- время по течению реки
12/(х-3)ч- время против течения реки
затратив на весь путь 2 ч. получаем уравнение
10/(х+3)+12/(х-3)=2- обе части уравнения умножем на x^2-9 не=0, х не= +-3
10(х-3)+12(х+3)=2(x^2-9)
10x-30+12x+36=2x^2-18
22x+6=2x^2-18
2x^2-22x-24=0- Обе части уравнения делим на 2
x^2-11x-12=0
По теореме Вието
x1+x2=11=12+(-1)=11
x1*x2=-12=12*(1)=-12
x1=12
x2=-1-не является решением нашей задачи
ответ: Скорость лодки 12км/ч.
Последовательность точек xn R на числовой оси называется сходящейся, если существует такая точка M 0, что для для любого как угодно малого положительного числа ε > 0 найдётся для этой последовательности номер, зависящий от этого ε, такой, что для всех последующих номеров расстояние между членами числовой последовательности и точкой M0 будет меньше этого ε:
(2.1)
Это означает, что в любую как угодно малую окрестность точки М0 попадают все точки этой последовательности, начиная с некоторой (и тем самым вне этой окрестности остаётся лишь конечное число точек последовательности). Расстояние между точками числовой оси было определено в курсе аналитической геометрии.
Точка М0 называется пределом последовательности xn, что обозначается символом .
Если для заданной последовательности не существует точки М0, для которой было бы справедливо свойство (2.1), то последовательность называется расходящейся.
Для точек числовой оси расстояние между двумя любыми её точками определяется соотношением
d (x, y) = | x - y |.
Последовательность действительных чисел {x1, x2, x3,…,xn,…} сходится к числу х, если
Неравенство | xn - x | < ε можно записать в виде
x - ε < xn < x + ε, n > N
и n > N все точки числовой последовательности будут находиться в указанном интервале.