18 дней и 36 дней
Объяснение:
х - скорость работы первой бригады
у - скорость работы второй бригады
Всю работу примем за 1.
По условию, работая вместе бригада выполнит работу за 12 дней, значит 1/(х+у)=12.
Первая бригада выполнит половину работу 1/(2х) и вторая работа выполнит оставшуюся часть, т.е. половину работы 1/(2у) за 27 дней.
Составим и решим систему уравнений:
Т.е. скорость одной бригады 1/18, а скорость другой 1/36
1:1/18=18 дней потребуется одной бригаде на выполнение всей работы
1:1/36=36 дней потребуется другой бригаде для выполнения всей работы
1) a^2 - 10a +25 = ( a - 5 )^2 ( a - 5 )^2=a^2-10a+25
a^2-10a+25=a^2-10a+25
a^2-10a+25-a^2+10a-25=0
0=0
2) 25 - a^2 = ( 5 + a )( a - 5 ) 3) ( b - 1 )( a - 5 ) = - ( 1 - b )( a - 5 )
25-a^2-5a+a^2+25a-5a=0 ( b - 1 )( a - 5 )=(b+1)(a - 5)
15a+25=0 ba-a-5b-ba-a+5b+5=0
15a=-25 2a+5=0
a=-25/-15 2a=-5
a=5/3 a=-5/-2
a=2.5
18 дней и 36 дней
Объяснение:
х - скорость работы первой бригады
у - скорость работы второй бригады
Всю работу примем за 1.
По условию, работая вместе бригада выполнит работу за 12 дней, значит 1/(х+у)=12.
Первая бригада выполнит половину работу 1/(2х) и вторая работа выполнит оставшуюся часть, т.е. половину работы 1/(2у) за 27 дней.
Составим и решим систему уравнений:
Т.е. скорость одной бригады 1/18, а скорость другой 1/36
1:1/18=18 дней потребуется одной бригаде на выполнение всей работы
1:1/36=36 дней потребуется другой бригаде для выполнения всей работы
1) a^2 - 10a +25 = ( a - 5 )^2 ( a - 5 )^2=a^2-10a+25
a^2-10a+25=a^2-10a+25
a^2-10a+25-a^2+10a-25=0
0=0
2) 25 - a^2 = ( 5 + a )( a - 5 ) 3) ( b - 1 )( a - 5 ) = - ( 1 - b )( a - 5 )
25-a^2-5a+a^2+25a-5a=0 ( b - 1 )( a - 5 )=(b+1)(a - 5)
15a+25=0 ba-a-5b-ba-a+5b+5=0
15a=-25 2a+5=0
a=-25/-15 2a=-5
a=5/3 a=-5/-2
a=2.5