Пусть скорость третьего атомобиля равна х км\час, за час первый автомобиль км, второй разница скоростей третьего и первого автомобиля равна (x-80) км\час, третий автомобиль догнал первый за 80/(x-80) час. За время от начала движения второй автомобиль проехал (80/(x-80)+1)*100=8000/(x-80)+100 км, расстояние от второго автомобиля до третьего равно 8000/(x-80)+100 -80/(x-80)*x км, разница скоростей третьего и второго автомобилей равна (х-100) км\час, по условию задачи третйи автомобиль догонит третий за (составляем уравненение)
(8000/(x-80)+100 -80х/(x-80)) :(x-100)=3
8000+100(х-80)-80х=3(x-80)(x-100)
8000+100x-8000-80x=3(x^2-180x+8000)
20x=3x^2-540x+24000
3x^2-560x+24000=0
D=25 600=160^2
x1=(560-160)/(2*3)<80 - не подходит условию задачи (скорость третьего автомобиля не может быть меньшей за скорость второго , меньшей за скорость первого)
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Пусть скорость третьего атомобиля равна х км\час, за час первый автомобиль км, второй разница скоростей третьего и первого автомобиля равна (x-80) км\час, третий автомобиль догнал первый за 80/(x-80) час. За время от начала движения второй автомобиль проехал (80/(x-80)+1)*100=8000/(x-80)+100 км, расстояние от второго автомобиля до третьего равно 8000/(x-80)+100 -80/(x-80)*x км, разница скоростей третьего и второго автомобилей равна (х-100) км\час, по условию задачи третйи автомобиль догонит третий за (составляем уравненение)
(8000/(x-80)+100 -80х/(x-80)) :(x-100)=3
8000+100(х-80)-80х=3(x-80)(x-100)
8000+100x-8000-80x=3(x^2-180x+8000)
20x=3x^2-540x+24000
3x^2-560x+24000=0
D=25 600=160^2
x1=(560-160)/(2*3)<80 - не подходит условию задачи (скорость третьего автомобиля не может быть меньшей за скорость второго , меньшей за скорость первого)
x2=(560+160)/(2*3)=120
х=120
ответ:120 км\час
отметь как лучшее
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение: