1)f(x)= x^4-2x^2-3; Найдем производную f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х (х²-1)=4х (х-1)(х+1) Найдем критические точки, т. е f´(x)=0 4х (х-1)(х+1)=0 х=0 или х=1 или х=-1 -__-1___+0-1___+→Х
f´(-2)= 4*(-2)(-2-1)(-2+1)= 4*(-2)(-3)(-1)<0 ( нас интересует знак, а не число) f´(-0,5)= 4*(-0,5)(-0,5-1)(-0,5+1)= 4*(-0,5)(-1,5)*0,5>0 f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5<0 f´(2)= 4*2*(2-1)(2+1)=4*2*1*3>0 В точке х=-1 производная меняет знак с – на +, значит это точка минимума; В точке х=0 производная меняет знак с +на -, значит это точка максимума; В точке х=1 производная меняет знак с – на +, значит это точка минимума; 2) f(x)= x^2+3x /x+4 Найдем производную f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+4)-(х²+3х) *1/(х+4)²=(2х²+8х+3х+12-х²-3х) /(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)² Найдем критические точки, т. е f´(x)=0 (х²+8х+12)/(х+4)²=0 х²+8х+12=0 и Х+4≠0; х≠-4 Д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6 т. е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т. к. (х+4)²>0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6)
+__-6___--4--2___+→Х
f´(-7)= (-7+2)(-7+6)=-5*(-1)>0 f´(-5)= (-5+2)(-5+6)=-3*1<0 f´(-3)= (-3+2)(-3+6)=-1*3<0 f´(0)= (0+2)(0+6)=2*6>0 В точке х=-6 производная меняет знак с + на - значит это точка максимума; В точке х=-4 производная не меняет знак, значит это точка не является точкой экстремума ; В точке х=-2 производная меняет знак с – на +, значит это точка минимума; Удачи!
Объяснение:
1)Найти координаты вершины параболы:
а) y=x²-7x+10
х₀= -b/2a =7/2=3,5
у₀=3,5²-7*3,5+10=12,25-24,5+10= -2,25
Координаты вершины параболы (3,5; -2,25)
б)y= -2x²+3x+5
х₀= -b/2a= -3/-4=0,75
у₀= -2*0,75²+5*0,75+5= -2*0,5625+2,25+5= -1,125+2,25+5=6,125
Координаты вершины параболы (0,75; 6,125)
2)Найти координаты точек пересечения функции с осями координат:
а) y= -x²+5x-1
При пересечении графика с осью У х=0:
х=0
у= -0²+5*0-1
у= -1
Координаты пересечения графика с осью У (0; -1)
Для определения точек пересечения с осью Х (график парабола) нужно решить квадратное уравнение:
-x²+5x-1 =0
х²-5х+1=0
х₁,₂=(5±√25-4)/2
х₁,₂=(5±√21)/2
х₁,₂=(5±4,6)/2
х₁=0,2
х₂=4,8
Координаты точек пересечения графиком оси Х, нули функции,
(0,2; 0) (4,8; 0)
б)y=5x²-7x+2
При пересечении графика с осью У х=0:
х=0
у=5*0²-7*0+2
у=2
Координаты пересечения графика с осью У (0; 2)
Для определения точек пересечения с осью Х (график парабола) нужно решить квадратное уравнение:
5x²-7x+2=0
х₁,₂=(7±√49-40)/10
х₁,₂=(7±√9)/10
х₁,₂=(7±3)/10
х₁=0,4
х₂= 1
Координаты точек пересечения графиком оси Х, нули функции,
(0,4; 0) (1; 0)
Найдем производную
f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х (х²-1)=4х (х-1)(х+1)
Найдем критические точки, т. е f´(x)=0
4х (х-1)(х+1)=0
х=0 или х=1 или х=-1
-__-1___+0-1___+→Х
f´(-2)= 4*(-2)(-2-1)(-2+1)= 4*(-2)(-3)(-1)<0 ( нас интересует знак, а не число)
f´(-0,5)= 4*(-0,5)(-0,5-1)(-0,5+1)= 4*(-0,5)(-1,5)*0,5>0
f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5<0
f´(2)= 4*2*(2-1)(2+1)=4*2*1*3>0
В точке х=-1 производная меняет знак с – на +, значит это точка минимума;
В точке х=0 производная меняет знак с +на -, значит это точка максимума;
В точке х=1 производная меняет знак с – на +, значит это точка минимума;
2) f(x)= x^2+3x /x+4
Найдем производную
f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+4)-(х²+3х) *1/(х+4)²=(2х²+8х+3х+12-х²-3х) /(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)²
Найдем критические точки, т. е f´(x)=0
(х²+8х+12)/(х+4)²=0
х²+8х+12=0 и Х+4≠0; х≠-4
Д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6
т. е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т. к. (х+4)²>0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6)
+__-6___--4--2___+→Х
f´(-7)= (-7+2)(-7+6)=-5*(-1)>0
f´(-5)= (-5+2)(-5+6)=-3*1<0
f´(-3)= (-3+2)(-3+6)=-1*3<0
f´(0)= (0+2)(0+6)=2*6>0
В точке х=-6 производная меняет знак с + на - значит это точка максимума;
В точке х=-4 производная не меняет знак, значит это точка не является точкой экстремума ;
В точке х=-2 производная меняет знак с – на +, значит это точка минимума;
Удачи!