Персонаж задачи в магазине, где лежат все товары, вероятность того, что среди всех товаров случайно купленный им будет высшего сорта равна 24%,
Остальные 76% это вероятность того, что случайно купленный им продукт старая продукция высшего сорта, старая продукция не высшего сорта,или же новая продукция не высшего сорта..
ответ: 24%
(персонаж задачи)
/ | \
1 завод(30%); 2 завод(20%); 3 завод(50%)
/ \ / \ / \ (20%в),(10%н); (15%в),(5%н); (30%в),(20%н)
Найти вероятность того, что что случайно купленная новая продукция окажется высшего сорта.
P=30/100×20/100+20/100×15/100+50/100×30/100=6/100+3/100+15/100=24/100=0,24=24%.
в - продукция высшего сорта
н - продукция не высшего сорта
Персонаж задачи в магазине, где лежат все товары, вероятность того, что среди всех товаров случайно купленный им будет высшего сорта равна 24%,
Остальные 76% это вероятность того, что случайно купленный им продукт старая продукция высшего сорта, старая продукция не высшего сорта,или же новая продукция не высшего сорта..
Відповідь:
0.32
Пояснення:
Рисунок : квадрат 3×3 ; S□=9 всевозможние пари чисел (х, у). которие принимают значения от [-1; 2]
х+у>1 дает значения в етом квадрате више прямой у=1-х
ух<1 дает область под гиперболой
найдем пересечение гиперболи с квадратом у=2, имеем х=0.5
Тогда площадь под гиперболой S=∫_0.5^2 1/х dx= ln x |_0.5^2=ln 2- ln0.5=1.386.
∫_0.5^2 - Интеграл от 0,5 до 2
Область пар (х,у) можна разбить на 3 области:
хє[-1; 1/2] треугольник, ограничений прямой х+у>1 и сторонами квадрата,
хє(1; 2] - область под гиперболой и еще треугольник, ограничений прямой х+у>1 и прямой у=0, для ує[-1;0]
S△=1/2×(1.5)^2=1.125 для хє[-1; 1/2] & ує[ 1/2;2]
S◁=1/2×1×1=1/2=0.5 для хє[1; 2] & ує[-1;0]
S▽=1/2×(0.5)^2=0.125 треугольник под прямой х+у=1, которий вошел в площу гиперболи, его нужно отнять
для хє[1/2; 1] & ує[1/2;1]
Тогда
P=(S△+S◁+S-S▽)/S□=(1.125+0.5+1.386-0.125)/9=0.32