У Саши, Пети и Васи есть по 1 картонному квадрату. Сторона Сашиного квадрата на 3 см короче стороны Петиного квадрата и на 3 см длиннее стороны Васиного квадрата. Площадь Петиного квадрата на 144 см2 больше площади Васиного квадрата. Найдите площадь Сашиного квадрата.
рассмотрю случай когда х и у положительны
x^2+y^2-8x-8y+31≤0
(x-4)^2+(y-4)^2-1≤0
(x-4)^2+(y-4)^2≤1-это круг радиуса 1 с центом в точке О(4;4)
учитывая разные знаки х и у -графиком первого уравнения будут четыре круга-рисунок 1
второе уравнение-это уравнение окружности радиуса а с центром в О1(0;1)
решением системы будет 2 точки, пересечение окружности с центром в О1 и окружности с центром в О.(симметричный круг с центром в О2(-4;4) даст вторую точку, радиус а будет такой же-поэтому я рассмотрю первый случай)
Чтобы найти а, посчитаю расстояние ОО1 и вычту из него 1(радиус круга)
OO1^2=(4-0)^2+(4-1)^2=16+9=25
OO1=5
тогда a=5-1=4
учитывая что параметр -просто число, а не радиус окружности, то случай a=-4 тоже подойдет
при а=+-4 у системы будет 2 решения
sqrt(x-a)*(x^2+(1+2a^2)*x+2a^2)=0
x^2+x +2a^2*x+2a^2=
x*(x+1) +2a^2*(x+1)=(x+1)*(x+2a^2)
sqrt(x-a)*(x+1)*(x+2a^2)=0
2 корня может быть в двух случаях. 1) Один из корней -1 или -2a^2 или a ,должен быть равен какому нибудь другому, но при этом,другие корни должны удовлетворять ОДЗ: x>=a. 2) Все корни отличны друг от друга,но при этом один корень удовлетворяет ОДЗ, а другой нет.
1) a=-1 (x1=x2=-1)
-2a^2=-2<-1 (этот случай не подходит)
a=-2a^2 (x1=x3=a) a=0>-1=x2 a=-1/2>-1 =x2(не подходит)
-2a^2=-1 (x2=x3=-1)
a=+-1/sqrt(2) >-1 (не подходит)
Вывод: никакие 2 корня не могут быть равны друг другу, тк в этом случае будет 1 решение.
2) Один из корней x2 или x3 удовлетворяет условию :
x-a>0,другой не удовлетворяет. Корень x1=a всегда удовлетворяет ОДЗ.
Этот случай равносилен неравенству:
(x2-a)*(x3-a)<0
(-1-a)*(-2a^2-a)<0
(a+1)*a*(a+2)<0
Решая методом интервалов получаем: считая слева направо от -2 до 0 имеем знаки -,+,-,+
a=(-беск;-2) v (-1;0)
ответ: a=(-беск;-2) v (-1;0)