У ванні є два крана. Через перший кран вода наливається у ванну, а через другий — витікає з ванни.
Якщо відкрити обидва крана, то повна ванна випорожниться за 36 хвилин. Скільки хвилин буде наповнюватися ванна, якщо буде відкритий тільки перший кран, і відомо, що через другий кран повна ванна випорожниться на 3 хвилин(-и) швидше, ніж перший кран наповнить порожню ванну.
За скільки хвилин другий кран випорожнить повну ванну?
Перший кран наповнить порожню ванну за
хвилин.
Другий кран випорожнить повну ванну за
хвилин.
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
1. АО = ОС по условию,
ВО = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
2. NK = KP по условию,
∠MNK = ∠EPK по условию,
∠MKN = ∠ЕКР как вертикальные, ⇒
ΔMKN = ΔЕКР по стороне и двум прилежащим к ней углам.
3. АВ = AD по условию,
∠ВАС = ∠DAC по условию,
АС - общая сторона для треугольников ВАС и DAC, ⇒
ΔВАС = ΔDAC по двум сторонам и углу между ними.
4. ВС = AD по условию,
∠CBD = ∠ADB по условию,
BD - общая сторона для треугольников CBD и ADB, ⇒
ΔCBD = ΔADB по двум сторонам и углу между ними.
5. ∠MDF = ∠EDF по условию,
∠MFD = ∠EFD по условию,
DF - общая сторона для треугольников MDF и EDF, ⇒
ΔMDF = ΔEDF по стороне и двум прилежащим к ней углам.
6.
а) ∠МАВ = ∠NBA по условию,
∠МВА = ∠NAB по условию,
АВ - общая сторона для треугольников МАВ и NBA, ⇒
ΔМАВ = ΔNBA по стороне и двум прилежащим к ней углам.
б) АМ = BN из равенства ΔМАВ = ΔNBA (см. п. а))
∠АМН = ∠ВNН из равенства ΔМАВ = ΔNBA,
∠МАН = ∠МАВ - ∠НАВ
∠NBH = ∠NBA - ∠HBA, а так как ∠МАВ = ∠NBA по условию и ∠НВА = ∠НAB по условию, то и
∠MAH = ∠NBH, ⇒
ΔMAH = ΔNBH по стороне и двум прилежащим к ней углам.
7. МК = PN по условию,
MN = PK по условию,
NK - общая сторона для треугольников MNK и PKN, ⇒
ΔMNK = ΔPKN по трем сторонам.
8. ∠ABD = ∠CDB по условию,
∠ADB = ∠CBD по условию,
BD - общая сторона для треугольников ABD и CDB , ⇒
ΔABD = ΔCDB по стороне и двум прилежащим к ней углам.
9. ∠САВ = ∠EFD по условию,
∠АВС = ∠EDF по условию,
АВ = AD + DB
FD = FB + DB, а так как AD = BF по условию, то и
АВ = FD, ⇒
ΔСАВ = ΔEFD по стороне и двум прилежащим к ней углам.
10.
а) АС = ВС по условию,
∠СВЕ = ∠CAD по условию,
угол при вершине С - общий для треугольников СВЕ и CAD, ⇒
ΔСВЕ = ΔCAD по стороне и двум прилежащим к ней углам.
б) ∠ADC = ∠BEC из равенства треугольников СВЕ и CAD, ⇒
∠BDF = ∠AEF как смежные с равными углами,
∠DBF = ∠EAF по условию,
BD = BC - DC
AE = AC - EC, а так как ВС = АС по условию, и DC = EC из равенства треугольников СВЕ и CAD, то и BD = AE, ⇒
ΔBDF = ΔAEF по стороне и двум прилежащим к ней углам.
11. КН = ЕН по условию,
FK = PE по условию,
∠FKH = ∠PEH как смежные с равными углами, ⇒
ΔFKH = ΔPEH по двум сторонам и углу между ними.
12. DE = CE по условию,
∠ADE = ∠BCE как смежные с равными углами,
∠AED = ∠BEC как вертикальные, ⇒
ΔAED = ΔBEC по стороне и двум прилежащим к ней углам.
Объяснение: