Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°
sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный.
2 | 1
3 | 4
схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)=
-ctg45°
x^3+6x^2-x-30
Объяснение:
(x+5)(x^2+x-6)=x^3+x^2-6x+5x^2+5x-30=x^3+6x^2-x-30
1. В таких случаях нужно умножать каждый одночлен из первых скобок на каждый одночлен из вторых скобок.
2. Получаем:
1) x*x^2 = x^3 (степени складываются (1+2=3);
2) x*x=x^2 (см. 1)
3) x*(-6)=-6x
4) 5*x^2=5x^2
5) 5*x=5x
6) 5*(-6)=-30
3. Складываем все получившиеся одночлены: x^3+x^2-6x+5x^2+5x-30
4. Приводим подобные слагаемые: x^3+x^2-6x+5x^2+5x-30=x^3+(x^2+5x^2)+(-6x+5x)-30=x^3+6x^2-x-30
P.S. про это надо знать, в более старших классах пригодится !