В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
ashueva1919
ashueva1919
29.04.2023 13:20 •  Алгебра

Укажіть кількість розв'язків системи рівнянь
x²+y²=1
xy=-1​


Укажіть кількість розв'язків системи рівнянь x²+y²=1xy=-1​

Показать ответ
Ответ:
16653
16653
05.05.2022 16:42
См. приложение
V=(a-2x)(b-2x)·x
Исследуем функцию V(x) на максимум, минимум.
Находим производную
V=4x³-2ax²-2bx²+abx
V`(x)=12x²-4ax-4bx+ab
Приравниваем к ную
12х²-4ax-4bx+ab=0
12x²-(4a+4b)x+ab=0 квадратное уравнение относительно х:
D=(4a+4b)²-4·12·ab=16a²+32ab+16b²-48ab=16a²-16ab+16b²=16(a²-ab+b²)
x₁=(4a+4b-4√(a²-ab+b²))/24  или x₂=(4a+4b+4√(a²-ab+b²))/24
Расставим знаки производной
Производная квадратичная функция, график парабола, ветви вверх
     +                  _                      +
-----------(х₁)---------------(х₂)---------------
Наибольшее значение в т.очке х₁, так как производная меняет знак  с + на _
ответ. х=(4a+4b-4√(a²-ab+b²))/24

Из прямоугольного листа жести размерами axb, вырезав квадратные уголки, нужно сделать открытую короб
0,0(0 оценок)
Ответ:
looooooooollll
looooooooollll
14.10.2021 23:12
1) надо знать формулы
     a³+b³=(a+b)(a²-ab+b²)                          a³-b³=(a-b)(a²+ab+b²)
     a⁴+b⁴=(a+b)(a³-a²b+ab²-b⁴)                a⁴-b⁴=(a-b)(a³+a²b+ab²+b⁴)
   и по аналогии с ними уметь разложить
   a ^{n}+b ^{n}=(a+b)(a ^{n-1}-a ^{n-2}b.... (-1) ^{n-1}b ^{n-1} )
a ^{n}-b ^{n}=(a-b)(a ^{n-1}+a ^{n-2}b.... +b ^{n-1} )
7 ^{2n}-4 ^{2n}=(7 ^{n}) ^{2}-(4 ^{n}) ^{2}=(7^{n}-4 ^{n})(7 ^{n}+4 ^{n})= \\ =(7-4)(7 ^{n-1}+7 ^{n-2}\cdot 4+... + 7\cdot4 ^{n-2}+4 ^{n-1})\cdot \\ \cdot(7+4)(7 ^{n-1}-7 ^{n-2}\cdot 4+... + 7\cdot4 ^{n-2}-4 ^{n-1})= \\ =(7-4)(7+4)\cdot F(n)=33\cdot F(n)
кратно 3
2) Доказательство методом математической индукции состоит из трех шагов
   - проверить выполнение для n = 1
\frac{1}{1\cdot5}= \frac{1}{1\cdot5}
-   предположить, что равенство верно для n=k
\frac{1}{1\cdot 5}+ \frac{1}{5\cdot 9}+ ...+ \frac{1}{(4k-3)(4k+1)}= \frac{k}{4k+1}
и используя это равенство, доказать, что и для следующего натурального  числа (k+1) , равенство верно
Т.е докажем, что
  \frac{1}{1\cdot 5}+ \frac{1}{5\cdot 9}+...+ \frac{1}{(4k-3)(4k+1)}+ \frac{1}{(4k+1)(4k+5)}= \frac{k+1}{4k+5}
Для доказательства берем левую часть последнего равенства и заменяем первые k слагаемых на сумму (правую часть предыдущего равенства):
\frac{1}{1\cdot 5}+ \frac{1}{5\cdot 9}+...+ \frac{1}{(4k-3)(4k+1)}+ \frac{1}{(4k+1)(4k+5)}=\frac{k}{4k+1}+ \frac{1}{(4k+1)(4k+5)} =
= \frac{k(4k+5)+1}{(4k+1)(4k+5)} = \frac{4k ^{2} +5k+1}{(4k+1)(4k+5)}= \frac{(4k+1)(k+1)}{(4k+1)(4k+5)}= \frac{(k+1)}{(4k+5)}
верно.
Таким образом на основании принципа математической индукции равенство верно для любого натурального n
3)
(x+3) - (x-5) = x+1
x + 3 - x + 5 = x +1
   8 = x + 1
   x = 8 - 1
  x= 7
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота