Объяснение:
1). (x-4)/(3+3x)>=x/3 -(x+1)/4
Допустим:
(x-4)/(3+3x)=x/3 -(x+1)/4
(x-4)/(3(1+x))=(4x-3(x+1))/12
4(x-4)=(1+x)(4x-3x-3)
4x-16=x-3+x²-3x
x²-2x-3-4x+16=0
x²-6x+13=0
D=36-42=-6 - это уравнение не имеет решений, так как из отрицательного числа корень не извлекается.
Если уравнение не имеет решений, тогда данное неравенство будет выполняться всегда или не будет выполняться никогда.
Подставим любую точку, например, x0=0:
(0-4)/(3+3*0)>=0/3 -(0+1)/4
-4/3>=-1/4
-1 1/3<-1/4 - данное неравенство не имеет решений.
2). (2x-1)/2 -2x/5>(3x-2)/5 -x/4
(2x-1)/2 -2x/5=(3x-2)/5 -x/4
10x/10 -4x/10 -1/2=12x/20 -5x/20 -2/5
3x/5 -1/2=7x/20 -2/5
12x/20 -7x/20=5/10 -4/10
x/4=1/10
10x=4
x=4/10=2/5=0,4
Чтобы узнать какой поставить знак неравенства, подставим любую точку, например, x0=0:
(2*0-1)/2 -2*0/5>(3*0-2)/5 -0/4
-1/2>-2/5
-0,5<-0,4.
Значит берем знак больше 0:
x>0,4
ответ: x∈(0,4; +∞).
Объяснение:
1). (x-4)/(3+3x)>=x/3 -(x+1)/4
Допустим:
(x-4)/(3+3x)=x/3 -(x+1)/4
(x-4)/(3(1+x))=(4x-3(x+1))/12
4(x-4)=(1+x)(4x-3x-3)
4x-16=x-3+x²-3x
x²-2x-3-4x+16=0
x²-6x+13=0
D=36-42=-6 - это уравнение не имеет решений, так как из отрицательного числа корень не извлекается.
Если уравнение не имеет решений, тогда данное неравенство будет выполняться всегда или не будет выполняться никогда.
Подставим любую точку, например, x0=0:
(0-4)/(3+3*0)>=0/3 -(0+1)/4
-4/3>=-1/4
-1 1/3<-1/4 - данное неравенство не имеет решений.
2). (2x-1)/2 -2x/5>(3x-2)/5 -x/4
Допустим:
(2x-1)/2 -2x/5=(3x-2)/5 -x/4
10x/10 -4x/10 -1/2=12x/20 -5x/20 -2/5
3x/5 -1/2=7x/20 -2/5
12x/20 -7x/20=5/10 -4/10
x/4=1/10
10x=4
x=4/10=2/5=0,4
Чтобы узнать какой поставить знак неравенства, подставим любую точку, например, x0=0:
(2*0-1)/2 -2*0/5>(3*0-2)/5 -0/4
-1/2>-2/5
-0,5<-0,4.
Значит берем знак больше 0:
x>0,4
ответ: x∈(0,4; +∞).
= (a - 3)(a² + 3a + 3²) + 3a(a - 3) = (a - 3)(a² + 3a + 9 + 3a) =
= (a - 3)(a² + 6a + 9) = (a - 3)(a + 3)²
2) b³ + 125 + 2b + 10 = b³ + 5³ + 2(b + 5) =
= (b + 5)(b² - 5b + 5²) + 2(b + 5) = (b + 5)(b² - 5b + 25 + 2) =
= (b + 5)(b² - 5b + 27)
3) 3x + 6y - x³ - 8y³ = 3(x + 2y) - (x³ + (2y)³) =
= 3(x + 2y) - (x + 2y)(x² - 2xy + (2y)²) = (x + 2y)(3 - (x² - 2xy + 4y²)) =
= (x + 2y)(3 - x² + 2xy - 4y²)
Использованы формулы суммы и разности кубов
c³ + d³ = (c + d)(c² - cd + d²)
c³ - d³ = (c - d)(c² + cd - d²)