Укажите порядок действий при решении дробно-рационального уравнения.
Укажите порядок следования всех 4 вариантов ответа:
__ Найти общий знаменатель дробей, входящих в состав уравнения.
__ Умножить обе части дробного рационального уравнения на общий знаменатель.
__ Исключить корни, которые обращают общий знаменатель в ноль.
__ Решить целое уравнение.
а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
Объяснение:
х≠ℝ
Объяснение:
Итак. Найдем область допустимых значений
Х-1/х+2=х-4/х-3=-1, следовательно х≠-2 , х≠3
Переместим выражение в левую часть и изменим его знак
Х-1/х+2 - х-4/х-3 + 1 = 0
Запишем все числителели под одним общим знаменителем. (Х+2)*(х-3)
(Х-3)*(х-1)-(х+2)*(х-4)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Перемножим выражения в скобках
х²-х-3х+3-(х+2)*(х-4)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Затем
х²-х-3х+3-(х²-4х+2х-8)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Затем
х²-х-3х+3-(х²-4х+2х-8)+х²-3х+2х-6/(х+2)*(х+3) = 0
Приведем подобные члены:
х²-х-3х+3-х²-2х-8+х²-3х+2х-6/(х+2)*(х+3) = 0
Следовательно из этого получаем следующее, ведь перед нашими скобками стоит знак. Значит мы изменим знак каждого члена в скобках.
х²-х-3х+3-х²+2х+8+х²-3х+2х-6/(х+2)*(х+3) = 0
А поскольку сумма двух противоположных величин
Равна нулю , удалим их из выражения.
-х-3х+3+2х+8+х²-3х+2х-6/(х+2)*(х+3) = 0
Приведем подобные члены:
-3х+3+8+х²-6/(х+2)*(х-3) = 0
Вычислим сумму и разность:
-3х+5+х²/(х+2)*(х-3) =0
Когда частное выражений равно нулю, то и числитель должен быть равен нулю. Значит
-3х+5+х²=0
Используя переместительный закон Изменим порядок членов.
х²-3х-5=0
Решим квадратное уравнение используя формулу.
Х= -(-3)±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2х+1
Любое выражение умноженное на 1 не изменится.
Х= -(-3)±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2
А когда перед скобками стоит знак,
По правилу изменим знак каждого члена в скобках.
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2
Вычислим степень:
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) 9-4*5(тут заканчивай квадратный корень) / 2
И умножим числа.
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) 9-20(тут заканчивай квадратный корень) / 2
Вычислим разность:
Х= 3±√-11/2(2 без корня)
А так как корень из отрицательного числа не существует на множестве действительных чисел, то
х≠ℝ
это значит что Дискриминант отрицательный, значит нет решения.
Что и требовалось доказать!
Так же начертил график. Держи данные:
Корень (1,0)
Область определения: х≠-2
Пересечение с осью ординат
(0, - 1/2)
Область определения (вторая)
Х≠3
Пересечение с осью ординат:
(0, 1/3)