Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ. а) x^2-4x+1≤0 b) 2x^2-x+4>0 c) -x^2+3x-8≥0 d) -x^2+16≥0 1) Неравенство не имеет решений. 2) Решением неравенства является вся числовая прямая. 3) Решением неравенства является одна точка. 4) Решением неравенства является закрытый промежуток. 5) Решением неравенства является открытый промежуток. 6) Решением неравенства является объединение двух промежутков.
ответ: Не хватит
Объяснение: Сначала нужно посчитать площадь образца и шали, тоесть 10*10=100см², 170*70=11900см², далее нужно поделить обе площади, тоесть 11900:100=119см², теперь нужно умножить 119 на то число пряжи, которое было потрачено на образец, тоесть: 119*23=2737м, и чтобы окончательно понять, хватит ли пряжи или нет, нужно узнать, сколько всего пряжи есть у Марины Алексеевны, для этого 350*6=2100м, под итог, ей не хватит пряжи, потомучто число нужной пряжи больше чем то число пряжи, которое есть у Марины Алексеевны
1) Если требуется найти ВСЕ ОБЩИЕ РЕШЕНИЯ нескольких уравнений, то говорят, что надо решить систему уравнений.
2) Решением системы уравнений с двумя переменными называют ПАРУ ЗНАЧЕНИЙ ПЕРЕМЕННЫХ,ОБРАЩАЮЩУЮ КАЖДОЕ УРАВНЕНИЕ В ВЕРНОЕ РАВЕНСТВО.
3) Решить систему уравнений - это значит НАЙТИ ВСЕ РЕШЕНИЯ ИЛИ ДОКАЗАТЬ,ЧТО РЕШЕНИЙ НЕТ.
4) Суть графического метода решения системы уравнений состоит в следующем:
а) построить на одной координатор плоскости ГРАФИКИ УРАВНЕНИЯ, ВХОДЯЩИЕ В СИСТЕМУ.
б) найти КООРДИНАТЫ ВСЕХ ТОЧЕК ПЕРЕСЕЧЕНИЯ ПОСТРОЕННЫХ ГРАФИКОВ
в) ПОЛУЧЕННЫЕ ПАРЫ ЧИСЕЛ и будут искомыми решениями
5) Если одно из уравнений системы не имеет решений, то вся система РЕШЕНИЙ НЕ ИМЕЕТ.
6) Если каждое уравнение системы линейных уравнений имеет решение и графиком одного из уравнений является вся плоскость, то система имеет БЕСКОНЕЧНО МНОГО РЕШЕНИЙ.
7) Если графиками уравнений, входящих в систему линейных уравнений, являются прямые, то количество решений этой системы зависит от ВЗАИМНОГО РАСПОЛОЖЕНИЯ ДВУХ ПРЯМЫХ НА ПЛОСКОСТИ:
а) если прямые ПЕРЕСЕКАЮТСЯ, то система имеет единственное решение
б) если прямые СОВПАДАЮТ, то система имеет бесконечно много решений
в) если прямые ПАРАЛЛЕЛЬНЫ, то система решений не имеет.
Объяснение: