умоляю
1. Знайдіть перші чотири члени геометричної прогресії (b п ), якщо b 1 = -2, q
= -3.
2. Знайдіть знаменник і 5-й член геометричної прогресії 1/256.
1/128 .1/64
3. Між числами 16 і 81 вставте три таких числа, щоб разом із даними
числами вони утворювали геометричну прогресію.
4. Знайдіть перший член і знаменник геометричної прогресії (b п ), якщо b 10
= 9b 8 , b 3 + b 6 = 168, (q > 0).
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
- 3 и 4.
Объяснение:
Дано.
- 12 - произведение двух чисел;
1 - сумма двух чисел.
Найти: эти числа.
Решение.
1) Обозначим числа: a и b.
Тогда можно составить систему уравнений:
a · b = - 12 уравнение (1)
a + b = 1 уравнение (2)
2) Из уравнения (2) выразим а:
а = 1 - b
и подставим в уравнение (1):
a · b = - 12
3) Находим одно из чисел:
(1 - b) · b = - 12
b - b² = - 12
- b² + b + 12 = 0
b² - b - 12 = 0
b₁,₂ = 1/2 ± √(1/4 +12) = 1/2 ± √49/4 = 1/2 ± 7/2
b₁ = 1/2 + 7/2 = 8/2 = 4
b₂ = 1/2 - 7/2 = - 6/2 = - 3
4) Из уравнения (1) находим другое число:
а₁ · 4 = - 12
а₁ = (-12) : 4 = - 3
а₂ · (-3) = - 12
а₂ = (-12) : (-3) = 4
В обоих случаях получается одна и та же пара чисел: (-3) и 4.
ответ: - 3 и 4.