Умоляю фермеру надо вспахать 60 га поля. он превысил дневную норму на 1 га, поэтому всё поле вспахал на 3 дня раньше запланированного срока. сколько дней фермер пахал поле?
Рациональные корни находятся среди чисел вида a/b, где число а - делитель свободного члена, т.е. -2, а число b - делитель коэффициента при старшем члене (при наибольшей степени переменной, в нашем случае при x^2) т.е. 1
Делители 1 это 1 и -1 Делители 2 это 1,-1,2,-2 Поэтому возможные рациональные корни -1,1,2,-2
Подставив их в уравнение легко убедится что рациональных корней у данного уравнения нет. Так как нам известно, что корень из 2 явлеется корнем, то следовательно корень из 2 - иррациональное число. Доказано
Пусть искомое число x, тогда x = 22*p + 14 и x = 17*q + 9; p и q неотрицательные целые числа. 22*p + 14 = 17*q + 9 ; 22*p - 17*q + 5 = 0; решаем последнее ур-е, как ур-е в целых числах, частным решение является (-1; -1) 22*(-1) - 17*(-1) +5 = 0; вычитаем последние 2 равенства: 22*(p+1) - 17*(q+1) = 0; 22*(p+1) = 17*(q+1); т.к. 22 и 17 взаимно просты, то (q+1) делится нацело на 22, а (p+1) делится нацело на 17; q+1 = 22*A; p+1 = 17*B; 22*17B = 17*22*A; A=B = t; q= 22*t - 1; p= 17*t - 1; Наименьшее неотрицателные значения p и q , достигаются при t=1; q=21; p=16; x = 22*16 + 14=366; x = 17*21+ 9=366;
Пусть это чилос х. Тогад по первому условию: х=13k+10, где k - какое то натуральное число, и по второму условию: х=8l+2, где l - какое то натуральное число. Для начала сделаем оценку: х<1000 13k+10<1000 13k<990 k<77 Теперь приравниваем те два равентва: 13k+10=8l+2 13k+8=8l 13k=8(l-1) Правая часть равенства делится на 8, значит, и левая тоже. Т.к. 13 не кратно 8, то k делится на 8. Самое большое число k<77 и кратное 8, это k=72 Подставляем в равентсво и получаем, что х=946 Проверкой убеждаемся, что оно подходит.
Делители 1 это 1 и -1
Делители 2 это 1,-1,2,-2
Поэтому возможные рациональные корни
-1,1,2,-2
Подставив их в уравнение легко убедится что рациональных корней у данного уравнения нет. Так как нам известно, что корень из 2 явлеется корнем, то следовательно корень из 2 - иррациональное число. Доказано
22*p + 14 = 17*q + 9 ;
22*p - 17*q + 5 = 0; решаем последнее ур-е, как ур-е в целых числах, частным решение является (-1; -1)
22*(-1) - 17*(-1) +5 = 0; вычитаем последние 2 равенства:
22*(p+1) - 17*(q+1) = 0;
22*(p+1) = 17*(q+1);
т.к. 22 и 17 взаимно просты, то (q+1) делится нацело на 22, а (p+1) делится нацело на 17;
q+1 = 22*A; p+1 = 17*B;
22*17B = 17*22*A; A=B = t;
q= 22*t - 1;
p= 17*t - 1;
Наименьшее неотрицателные значения p и q , достигаются при t=1;
q=21;
p=16;
x = 22*16 + 14=366;
x = 17*21+ 9=366;
Пусть это чилос х.
Тогад по первому условию:
х=13k+10, где k - какое то натуральное число,
и по второму условию:
х=8l+2, где l - какое то натуральное число.
Для начала сделаем оценку:
х<1000
13k+10<1000
13k<990
k<77
Теперь приравниваем те два равентва:
13k+10=8l+2
13k+8=8l
13k=8(l-1)
Правая часть равенства делится на 8, значит, и левая тоже. Т.к. 13 не кратно 8, то k делится на 8.
Самое большое число k<77 и кратное 8, это k=72
Подставляем в равентсво и получаем, что х=946
Проверкой убеждаемся, что оно подходит.