1ч30мин=1.5чх-скорость автомобиляt-время в пути мотоциклиста до встречи с автомобилем (из а до с)t+1.5-время в пути автомобиля до встречи с мотоциклистом (из а до с) t=1.5x/(75-x)х*t= расстояние из с в в, которое проехал автомобиль375-75t=расстояние из с в в, которое не проехал мотоциклист375-75t=xtxt+75t=375t(x+75)=375x+75=375/tx+75=375: (1.5x/(75-x))х+75=375*((75-х)/1.5х)х+75=(28125-375х)/1.5х28125-375х=1.5х(х+75)28125-375х=1.5х^2+112.5х1.5х^2+487.5х-28125=0д=237656.25+168750=406406.25корень из д=637,5х1=(-487.5-637.5)/3=-375 не подходитх2=(-487.5+637.5)/3=50км/ч скорость автомобиля 50*1.5=75км проехал автомобиль за 1ч30мин75-50=25км/ч скорость сближения75: 25=через 3 часа мотоцикл догнал автомобиль в с3*75=50(3+1.5) 225=225км расстояние от а до с.
ответ: 2 x + 1.
г) При каких m и n многочлен x 3 + m x + n при любых x делится на x 2 + 3 x + 10 без остатка.
(Решение проектируется на экран или заранее написать на доску).
Решение. При делении “уголком” получим x 3 + m x + n = (x 2 + 3 x + 10) (x – 3) + ((m – 1) x + (n + 30)).
Т.к. деление выполняется без остатка, то (m – 1) x + (n + 30) = 0, а это возможно (при любом x) только в случае, когда m = 1, n = –30.
ответ: m = 1, n = –30.
2. Теоретический опрос.
а) Как читается теорема Безу?
б) Привести пример, где используется теорема Безу.
в) Из правила перемножения двух многочленов как найти старший коэффициент произведения?
г) Имеет ли степень нулевой многочлен?
д) Найти степень многочлена (3 x 499 – 5 x 400 + 7 x 372 – 11) 4 + (x – 1) 2006 . (ответ: десятая)
е) Приведите многочлен (x 2 – 1) (x 2005 + x 2003 + x 2001 + … + x) к стандартному виду. (ответ: x 2007 – 1).
Объяснение:
Отметь как лучший ответ