{у=1/4х^2 {у=5х-16 5x-16=0.25x^2 0.25x^2-5x+16=0 D=(-5)^2-4*0.25*16=9 x₁=4 x₂=1 y₁=4 y₂=-9 y=1/4*4²=4 y=5*4-16=4 y=1/4*1²=1/4 y=5*1-16=-11 Значит х=1 - лишний корень. При х=4 => 1/4x^2=4; 5x-16=4 ответ: точка пересечения параболы и прямой (4;4)
f(x)=x^2-8x+7 Квадратичная функция, график - парабола. Формула вершины параболы: x=-b/2a - формула касательной к вершине, параллельной 0Х: x=8/2 x=4 y=4^2-8*4+7 y=16-32+7 y=-9 Точка вершины параболы (4;-9). Направление ветвей параболы: подставим х=2 (можно любое значение х, если у будет больше, чеь у=-9, то ветви параболы направлены вверх). y=2^2-8*2+7 y=-1 -1>-9 - ветви параболы направлены вверх, значит область значения Е(у) ∈ (-9,+∞) Также прилагаю к первому заданию таблицу, ко второму - таблицу и график - для наглядности
/mn² + 2nmm²/mn² = (mmn² - 2m²n² + 2nmm²)/mn² = (m²n² - 2m²n² + 2m³n)/mn²
= (2m³n - m²n)/mn² = mn(2m² - m)/mn² = (2m² - m)/n
2) (u/u - v - u/u + v) · u² + uv/2v = uu²/u - vu²/1 - uu²/u + vu²/1 + uv/2v = uu²2v/u2v- - u2vvu²/u2v - uu²2v/u2v + vu²u2v/u2v + uuv/u2v = (uu²2v - u2vvu² - uu²2v +
+ vu²u2v + uuv)/2uv = (2u³v - 2u³v² - 2u³v + 2u³v² + u²v)/2uv = u²v/2uv = u/2
3) (a + b)² ÷ (1/a² + 1/b² + 2/ab) = (a + b)(a + b)/1 ÷ (b²/a²b² + a²/a²b² + 2ab/a²b²) =
= (a + b)(a + b)/1 ÷ (a² + 2ab + b²)/a²d² = (a + b)(a + b)/1 ÷ (a + b)(a + b)/a²d² = (a + b)(a + b)/1 · a²d²/(a + b)(a + b) = (a + b)(a + b)a²d²/(a + b)(a + b) = a²d²
{у=5х-16
5x-16=0.25x^2
0.25x^2-5x+16=0
D=(-5)^2-4*0.25*16=9
x₁=4
x₂=1
y₁=4
y₂=-9
y=1/4*4²=4
y=5*4-16=4
y=1/4*1²=1/4
y=5*1-16=-11
Значит х=1 - лишний корень.
При х=4 => 1/4x^2=4; 5x-16=4
ответ: точка пересечения параболы и прямой (4;4)
f(x)=x^2-8x+7
Квадратичная функция, график - парабола.
Формула вершины параболы: x=-b/2a - формула касательной к вершине, параллельной 0Х:
x=8/2
x=4
y=4^2-8*4+7
y=16-32+7
y=-9
Точка вершины параболы (4;-9).
Направление ветвей параболы:
подставим х=2 (можно любое значение х, если у будет больше, чеь у=-9, то ветви параболы направлены вверх).
y=2^2-8*2+7
y=-1
-1>-9 - ветви параболы направлены вверх, значит область значения
Е(у) ∈ (-9,+∞)
Также прилагаю к первому заданию таблицу, ко второму - таблицу и график - для наглядности