Подкоренное выражение должно быть больше или равно нулю , так как корня из отрицательного числа не существует. Решим квадратное уравнение : 2х^2+2х-4=0 Разделим обе части уравнения на число 2. Получаем : х^2+х-2=0 Найдем корни по теореме Виета : Сумма корней равна -в , то есть -1 Произведение корней равно с , то есть -2 Это числа : -2 и 1 Получаем график функции парабола: Ветви направленны вверх , пересечение с осью х в точках -2 и 1 Все значение внутри параболы нас не устраивают , так как тогда наше уравнение будет иметь отрицательные корни Значит область определения : от - бесконечности до -2 и от 1 до + бесконечности.
Во-первых, если функция имеет неустранимый разрыв 2 рода, то она не ограничена.
Например, дроби при знаменателе, равном 0, или логарифм при числе меньше 0.
Если таких разрывов нет, тогда второй шаг.
Нужно проверить её пределы на +oo и - oo.
Если lim(x->-oo) y(x) = a (какому-то числу), то функция y(x) ограничена снизу.
Если lim(x->+oo) y(x) = a, то функция ограничена сверху.
Если оба предела равны oo, тогда смотрим на знаки.
Если lim(x->-oo) y(x) = lim(x->+oo) y(x) = +oo, то функция ограничена снизу.
Например, парабола y=ax^2+bx+c при а > 0.
Если наоборот, оба предела равны -oo, то функция ограничена сверху.
Например, та же парабола при а < 0.
В обоих случаях парабола ограничена в своей вершине.
И, наконец, если разрывов нет и пределы равны oo с разными знаками, то функция не ограничена.
Решим квадратное уравнение :
2х^2+2х-4=0
Разделим обе части уравнения на число 2.
Получаем :
х^2+х-2=0
Найдем корни по теореме Виета :
Сумма корней равна -в , то есть -1
Произведение корней равно с , то есть -2
Это числа : -2 и 1
Получаем график функции парабола:
Ветви направленны вверх , пересечение с осью х в точках -2 и 1
Все значение внутри параболы нас не устраивают , так как тогда наше уравнение будет иметь отрицательные корни
Значит область определения : от - бесконечности до -2 и от 1 до + бесконечности.