1. найдем производную функции y=2x^3-3x^2-1у'=(2x^3-3x^2-1)'=6x^2-6x 2. находим точки при которых производная равна нулю, для этого решим уравнение у'=0 6x^2-6x=0 6х(х-1)=0 откуда получаем два уравнения 1 ур. 6х=0, =>x=0 2 yp. x-1=0 => x=1 получили две точки 0 и 1 рисуем ось иксов и на ней отображаем наши точки 0 и 1 и определяем знак производной функции(необходимо нарисовать) 1 интервал (-беск, 0): + У'(-1)=6(-1)^2-6(-1)=12 2 интерв. (0,1): - y'(0,5)=6(0,5)^2-6(0,5)=1,5-3=-1,5 3 интерв. (1, беск):+ y'(2)=6(2)^2-6(2)=24+12=36 Видим что точка х=0 является максимум функции, а х=1 соответственно минимум. Подставим эти точки в функции и найдем значения функции у(0)=0-0-1=-1 у(1)=2-3-1=-2 fmax=-1 fmin=-2
y=2x^3-3x^2-1у'=(2x^3-3x^2-1)'=6x^2-6x
2. находим точки при которых производная равна нулю, для этого решим уравнение у'=0
6x^2-6x=0
6х(х-1)=0
откуда получаем два уравнения
1 ур. 6х=0, =>x=0
2 yp. x-1=0 => x=1
получили две точки 0 и 1
рисуем ось иксов и на ней отображаем наши точки 0 и 1 и определяем знак производной функции(необходимо нарисовать)
1 интервал (-беск, 0): +
У'(-1)=6(-1)^2-6(-1)=12
2 интерв. (0,1): -
y'(0,5)=6(0,5)^2-6(0,5)=1,5-3=-1,5
3 интерв. (1, беск):+
y'(2)=6(2)^2-6(2)=24+12=36
Видим что точка х=0 является максимум функции, а х=1 соответственно минимум.
Подставим эти точки в функции и найдем значения функции
у(0)=0-0-1=-1
у(1)=2-3-1=-2
fmax=-1
fmin=-2
Область определения:
1-x^2 не = 0,
x не = 1, x не = -1
В числителях выносим за скобки общие множители
4x(2-x)/(1-x^2) + x(4-x^2)/(1+x) = 0
4x(2-x)/(1-x^2) + x(2-x)(2+x)/(1+x) = 0
Приводим к общему знаменателю (1-x^2) = (1-x)(1+x)
[4x(2-x) + x(2-x)(2+x)(1-x)] / (1-x^2) = 0
Выносим за скобки общие множители x(2-x)
x(2-x)(4 + (2+x)(1-x)) / (1-x^2) = 0
Если дробь = 0, то числитель = 0
x(2-x)(4 + (2+x)(1-x)) = 0
x1 = 0, x2 = 2
4 + 2 - x - x^2 = 0
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
x3 = -3, x4 = x2 = 2
x^2 + 9/x^2 + x - 3/x = 8
Замена x - 3/x = y, тогда y^2 = (x - 3/x)^2 = x^2 + 9/x^2 - 2*x*3/x = x^2 + 9/x^2 - 6
То есть x^2 + 9/x^2 = y^2 + 6
Получаем
y^2 + 6 + y = 8
y^2 + y - 2 = 0
(y + 2)(y - 1) = 0
1) x - 3/x = 1
x^2 - x - 3 = 0
D = 1 + 4*3 = 13
x1 = (1 - √13)/2; x2 = (1 + √13)/2
2) x - 3/x = -2
x^2 + 2x - 3 = 0
(x + 3)(x - 1) = 0
x3 = -3; x4 = 1