значит заданная окружность - окружность радиуса 5 и с центром в точке О(0;5),
отсюда следует что искомая окружность и заданная не могут касаться внутренне, так как их радиусы одинаковы
значит в данном случае внешнее касание в точке М(3;1) так как точка касания и центры окружностей лежат на одной пряммой, то обозначив через А(x;y) центр искомой окружности и используя векторы получим вектор ОМ=вектор МА (0-3;5-1)=(3-x;1-y) -3=3-x; 4=1-y
x=3+3=6 y=1-4=-3 A(6;-3) - центр второй окружности значит ее уравнение
значит заданная окружность - окружность радиуса 5 и с центром в точке О(0;5),
отсюда следует что искомая окружность и заданная не могут касаться внутренне, так как их радиусы одинаковы
значит в данном случае внешнее касание в точке М(3;1)
так как точка касания и центры окружностей лежат на одной пряммой, то
обозначив через А(x;y) центр искомой окружности и используя векторы получим
вектор ОМ=вектор МА
(0-3;5-1)=(3-x;1-y)
-3=3-x;
4=1-y
x=3+3=6
y=1-4=-3
A(6;-3) - центр второй окружности
значит ее уравнение
( <-- ответ)
----
или
а) 8х²+16х+8=8(х²+2х+1)=8(х+1)²
Пояснение:
сначала выносим общий множитель за скобку 8(х²+2х+1),
в скобках - по формуле сокращённого умножения: 8(х+1)²
Формула сокращённого умножения квадрат суммы: (а+b)²=a²+2ab+b²
б) у-4у³=у(1-4у²)=у(1²-(2у)²)=у(1-2у)(1+2у)
Пояснение:
сначала выносим общий множитель за скобку: у(1-4у²),
потом выражение в скобках представляем как разность квадратов: у(1²-(2у)²),
затем по формуле сокращённого умножения: у(1-2у)(1+2у)
Формула сокращённого умножения разность квадратов: а²-b²=(a-b)(a+b)