В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Fara228229
Fara228229
24.11.2020 18:49 •  Алгебра

Упростите дробь: x^2-4xy+4y^2/
x-2y.
Найдите значение дроби при x=2,
y=3​

Показать ответ
Ответ:
vfhbz2000
vfhbz2000
23.08.2021 13:44

8

Объяснение:

Пусть все наши 14 карточек находится по порядку и не "склеиваются". Тогда поставим между ними знак + и посчитаем сумму

5 + 5 + 5 + … + 5 = 5*14 = 70 < 295  - не получилось.

Наша сумма оказалась слишком маленькая поэтому нам неоюходимо соединять карточки 5 в числа. Ясно, что в 555 соединять не надо - слишком много. Тогда попробуем по порядку:

1 число 55: 55 + 5 + 5 + ... + 5 = 115 < 295 - не попали

2 чисел 55: 55 + 55 + 5 + 5 + ... + 5 = 160 - снова не попали

3 числа 55: 55 + 55 + 55 + 5 + ... = 205 < 295 - опять не то

4 числа 55: 55 + 55 + 55 + 55 + 5 + ... = 250 < 295 - близко, но не то

5 чисел 55: 55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5 = 295 - Получилось!

Тогда посчитаем количество плюсов в примере

55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5

Получим 8 штук - и это ответ!

0,0(0 оценок)
Ответ:
vika36voronezhskaya
vika36voronezhskaya
07.08.2020 08:32
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота