Упростите многочлен запмсав каждый его член в стандартнрм виде 3ааа[1 2/3аb]+4xxx3xy 1,5yyy(-4xyz)-4mnk×5m^2nk^2 (2ab)[1/4 a^2b^2]-(3a^2b)[1/9b] (3a)[1/9 ab^2]-(4b^2)[1/2a^2b]
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
1 ученик - А
2 ученик - Б
Получаем:
А Б
4 5
5 4
5 5
4 4
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С
4 4 4
5 5 5
4 4 5
4 5 5
5 5 4
5 4 4
4 5 4
5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б
3 3
4 4
5 5
3 4
4 3
4 5
5 4
3 5
5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу:
- где a-число оценок, b-число учеников.
В итоге и получаем:
1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
Второй
Для первого ученика существует 4 варианта:
2,3,4,5
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
- варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
- варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
- вариантов событий.
(x² - x + 1)⁴ - 6x²(x² - x +1)² + 5x⁴ = 0
(x² - x + 1)² = y
y² - 6x²y + 5x⁴ = 0
D = (6x²)² - 4*5x⁴ = 16x⁴
y₁₂ = (6x² +- 4x²)/2 = x² 5x²
1. y = x²
(x² - x + 1)² = x²
(x² - x + 1)² - x² = 0
(x² - x + 1 - x)(x² - x + 1 + x) = 0
(x - 1)²(x² + 1) = 0
x = 1
x² + 1 = 0 нет действительных решений
2. y = 5x²
(x² - x + 1)² = 5x²
(x² - x + 1)² - 5x² = 0
(x² - x + 1 - √5x)(x² - x + 1 + √5x) = 0
x² - x + 1 - √5x = 0
x² - x(1 + √5) + 1 = 0
D = (1 + √5)² - 4 = 2 + 2√5
x₁₂ = (1 +√5 +- √(2 + 2√5))/2
x² - x + 1 + √5x = 0
x² - x(1 - √5) + 1 = 0
D = (1 - √5)² - 4 = 2 - 2√5 < 0 нет действительных решений
ответ 1, (1 +√5 ± √(2 + 2√5))/2