Первые дорожные указатели появились с возникновением первых дорог. Что бы не заблудиться в пути, древние путешественники надламывали сучья, делали метки на коре, размещали камни разного размера. Когда возникла письменность, на камнях стали писать названия населённых пунктов, в которые вели дороги. Первая система дорожных указателей возникла в Древнем Риме в III в. до н.э. Когда по дорогам стали ездить конные экипажи, была проведена организация дорожного движения. Возникновение первых автомобилей на рубеже XIX-XX веков, потребовало установления предупреждающих дорожных знаков для обеспечения безопасность езды на дороге.
Первые дорожные указатели появились с возникновением первых дорог. Что бы не заблудиться в пути, древние путешественники надламывали сучья, делали метки на коре, размещали камни разного размера. Когда возникла письменность, на камнях стали писать названия населённых пунктов, в которые вели дороги. Первая система дорожных указателей возникла в Древнем Риме в III в. до н.э. Когда по дорогам стали ездить конные экипажи, была проведена организация дорожного движения. Возникновение первых автомобилей на рубеже XIX-XX веков, потребовало установления предупреждающих дорожных знаков для обеспечения безопасность езды на дороге.
Будем считать, что дана арифметическая прогрессий, сумма трёх первых членов которой равна 15.
Её свойство: an+1= an + d, где d — это разность арифметической прогрессии.
Запишем сумму по условию для трёх членов.
Пусть первый х.
х + (х + d) + (х + 2d) = 15,
3х + 3d = 15 или, сократив на 3: х + d = 5.
То есть второй член найден и равен 5.
Получили члены арифметической прогрессии:
х, 5, (15 - х - 5) = х, 5, (10 - х).
Теперь используем условие для геометрической прогрессии:
(х + 1), (5 + 4), (10 - х + 19).
(х + 1), 9, (29 - х). Получили 3 члена геометрической прогрессии.
По свойству геометрической прогрессии:
(х + 1) / 9 = 9 / (29 - х).
Решаем эту пропорцию как квадратное уравнение и определяем его 2 корня: х1 = 2 и х2 = 26.
Последнее число не подходит.
Принимаем х = 2 и получаем ответ:
заданные числа равны 2, 5 и 8.