Пусть скорость течения равна х. Тогда скорость по течению равна (5+х) км/ч, скорость против течения равна( 5 - х) км/ч. 14 часов лодка отсутствовала, из них 1, 5 часа отдыхала. Время, которое лодка потратилa чисто на дорогу, равно 12, 5 часам. Составим уравнение: 30/(5-х) +30/(5+х) = 12,5; 30(5+х) + 30(5 -х) = 12,5*(5-х)(5+х); 150 +30х ++150 -30x= 12,5(25 - x^2);; 300=12,5*25 - 12,5 x^2; 12,5 x^2=12,5; x^2=1; x=1.
проверка: По течению лодка плыла 30 км со скорость 5+1=6 км/ч и потратила на это 30/6=5 часов, против течения лодка плыла со скорость 5-1=4 км/ч и потратила всего 30/4=7,5 часов. В сумме получается 5 + 7,5 =12, 5 часов. ОТвет ; скорость течения равна 1 км/ч
Во первых, здесь есть ограничения по ОДЗ: 64-x^2≥0; x^2 -64 ≤ 0; (x-8)(x+8)≤0; x∈[-8; 8]. Во-вторых, чтобы степенное выражение равнялось нулю, необходимо, чтобы основание было равно нулю. То есть sin x + sgrt3 *cos x=0; sin x= - sgrt3*cos x; Все делим на cos x≠0; tg x= - sgrt3; x=-pi/3 +pi*k; k∈Z; Теперь нужно отобрать корни из интервала от минус восьми до плюс восьми. Проще всего составить двойное неравенство -8≤ - pi/3 +pik ≤8; - 8≤pi(k - 1/3) ≤ 8;Разделим все на пи - 8/pi ≤k- 1/3 ≤ 8/pi; -8/pi ≤ (3k -1)/3 ≤ 8/pi; - 24/pi ≤ 3k - 1≤ 24/pi. Прибавим 1 к обеим частям неравенства 1- 24/pi ≤3k ≤1 +24/pi; Все разделим на 3 (1-24/pi) /3 ≤k≤(1+24/pi)/3. - 2,21≤k≤2,88. Целые значения к=-2, -1, 0, 1 и 2.Будет всего 5 корней. Если надо найти корни, то нужно просто подставить значения к в решение уравнение относительно тангенса и получить ответ.
Составим уравнение:
30/(5-х) +30/(5+х) = 12,5;
30(5+х) + 30(5 -х) = 12,5*(5-х)(5+х);
150 +30х ++150 -30x= 12,5(25 - x^2);;
300=12,5*25 - 12,5 x^2;
12,5 x^2=12,5;
x^2=1;
x=1.
проверка: По течению лодка плыла 30 км со скорость 5+1=6 км/ч и потратила на это 30/6=5 часов, против течения лодка плыла со скорость 5-1=4 км/ч и потратила всего 30/4=7,5 часов. В сумме получается 5 + 7,5 =12, 5 часов. ОТвет ; скорость течения равна 1 км/ч
64-x^2≥0;
x^2 -64 ≤ 0;
(x-8)(x+8)≤0;
x∈[-8; 8].
Во-вторых, чтобы степенное выражение равнялось нулю, необходимо, чтобы основание было равно нулю. То есть sin x + sgrt3 *cos x=0;
sin x= - sgrt3*cos x; Все делим на cos x≠0;
tg x= - sgrt3;
x=-pi/3 +pi*k; k∈Z;
Теперь нужно отобрать корни из интервала от минус восьми до плюс восьми.
Проще всего составить двойное неравенство -8≤ - pi/3 +pik ≤8;
- 8≤pi(k - 1/3) ≤ 8;Разделим все на пи
- 8/pi ≤k- 1/3 ≤ 8/pi;
-8/pi ≤ (3k -1)/3 ≤ 8/pi;
- 24/pi ≤ 3k - 1≤ 24/pi. Прибавим 1 к обеим частям неравенства
1- 24/pi ≤3k ≤1 +24/pi; Все разделим на 3
(1-24/pi) /3 ≤k≤(1+24/pi)/3.
- 2,21≤k≤2,88.
Целые значения к=-2, -1, 0, 1 и 2.Будет всего 5 корней. Если надо найти корни, то нужно просто подставить значения к в решение уравнение относительно тангенса и получить ответ.