Возведем обе части уравнения в квадрат, но с условием, что правая часть уравнения тоже неотрицательна, как и левая: ОДЗ: {x+2>=0 x>=-2 {x-28>=0 x>=28 Т.О., x e [28; + беск.)
x+2=(x-28)^2 x+2=x^2-56x+784 x+2-x^2+56x-784=0 -x^2+57x-782=0 x^2-57x+782=0 D=(-57)^2-4*1*782=121 x1=(57-11)/2=23 - посторонний корень, не входящий в ОДЗ x2=(57+11)/2=34 ответ: x=34
Можно графически решить это уравнение: построить график функции y=V(x+2) и график функции y=x-28. Абсцисса точки пересечения двух графиков и будет корнем уравнения.
Наши действия: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка. 4) из всех результатов ищем наибольший( наименьший) и пишем ответ. поехали? 1)f'(x) = 3x^2 -12 2)3x^2 -12 = 0 3x^2 = 12 x^2 = 4 x = +-2 3) из этих чисел в указанный промежуток [0;3] попал х = 2 f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9 f(0) = 0^3 -12*0 +7 = 7 f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2 4) ответ: max f(x) = f(0) = 7 minf(x) = f(2) = -9
ОДЗ:
{x+2>=0 x>=-2
{x-28>=0 x>=28
Т.О., x e [28; + беск.)
x+2=(x-28)^2
x+2=x^2-56x+784
x+2-x^2+56x-784=0
-x^2+57x-782=0
x^2-57x+782=0
D=(-57)^2-4*1*782=121
x1=(57-11)/2=23 - посторонний корень, не входящий в ОДЗ
x2=(57+11)/2=34
ответ: x=34
Можно графически решить это уравнение: построить график функции
y=V(x+2) и график функции y=x-28. Абсцисса точки пересечения двух графиков и будет корнем уравнения.
2) приравниваем её к нулю и решаем уравнение
3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка.
4) из всех результатов ищем наибольший( наименьший) и пишем ответ.
поехали?
1)f'(x) = 3x^2 -12
2)3x^2 -12 = 0
3x^2 = 12
x^2 = 4
x = +-2
3) из этих чисел в указанный промежуток [0;3] попал х = 2
f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9
f(0) = 0^3 -12*0 +7 = 7
f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2
4) ответ: max f(x) = f(0) = 7
minf(x) = f(2) = -9