При каких значениях а и в равенство
а/ (х+5) + b/(х-2)² = (х²+24) / (х³+х²-16х+20) является тождеством ?
Решение: а / (х+5) + b/(х -2)² = (х²+24) / (х³+х²-16х+20)
x³+х²-16х+20 = x³ - 2х²+3x²-6х - 10x +20 =x²(x-2) +3x(x-2) -10(x-2) =
(x-2)(x² +3x -10) =(x-2)(x +5)(x -2) = (x +5)(x -2)²
- - -
а / (х+5) + b/(х -2)² = (х²+24) / (х+5) (х -2)²
( a(х -2)² +b(x+5) ) / (х+5) (х -2)² = (х²+24) / (х+5) (х -2)²
a(х -2)² +b(x+5) ≡ х²+24 для всех x
ax² - 4ax +4a +bx +5b ≡ х²+24
ax² + (b -4a) x +4a +5b ≡ 1*х²+0*x +24 многочлены равны если
{ a=1 ; b-4a =0 ; 4a +5b =24 . ( система написана в одной строке)
{ a=1 ; b=4a ; 4a +5b =24.
{ a=1 ; b=4 ; 4*1 +5*4 =24.
ответ : a=1 ; b=4.
ответ: x1=7; x2=14
Объяснение:
x^(log2(x/98))*14^(log2(7)) = 1
Преобразуем:
log2(x/98) = log2(x) - log2(98) = log2(x) - (log2(7) +log2(14) )
14^log2(7) = x^(logx(14) * log2(7))
x^(log2(x) - (log2(7) +log2(14)) + log14(x) * log2(7) ) = 1
ОДЗ : x>0
log2(x) - (log2(7) +log2(14)) + logx(14) * log2(7) = 0
Проверим x= 1
14^(log2(7)) ≠ 1 → x≠1, но тогда log2(x)≠0
Значит, можно не боясь за приобретение постороннего решения умножить обе части уравнения на log2(x) .
Учитывая, что logx(14)*log2(x) = log2(x)/log14(x) = log2(14) , имеем :
( log2(x) )^2 - (log2(7) +log2(14))*log2(x) + log2(7)*log2(14) = 0
В силу теоремы Виета очевидно, что
1) log2(x) = log2(7)
x1=7
2) log2(x) = log2(14)
x2=14
При каких значениях а и в равенство
а/ (х+5) + b/(х-2)² = (х²+24) / (х³+х²-16х+20) является тождеством ?
Решение: а / (х+5) + b/(х -2)² = (х²+24) / (х³+х²-16х+20)
x³+х²-16х+20 = x³ - 2х²+3x²-6х - 10x +20 =x²(x-2) +3x(x-2) -10(x-2) =
(x-2)(x² +3x -10) =(x-2)(x +5)(x -2) = (x +5)(x -2)²
- - -
а / (х+5) + b/(х -2)² = (х²+24) / (х+5) (х -2)²
( a(х -2)² +b(x+5) ) / (х+5) (х -2)² = (х²+24) / (х+5) (х -2)²
a(х -2)² +b(x+5) ≡ х²+24 для всех x
ax² - 4ax +4a +bx +5b ≡ х²+24
ax² + (b -4a) x +4a +5b ≡ 1*х²+0*x +24 многочлены равны если
{ a=1 ; b-4a =0 ; 4a +5b =24 . ( система написана в одной строке)
{ a=1 ; b=4a ; 4a +5b =24.
{ a=1 ; b=4 ; 4*1 +5*4 =24.
ответ : a=1 ; b=4.
ответ: x1=7; x2=14
Объяснение:
x^(log2(x/98))*14^(log2(7)) = 1
Преобразуем:
log2(x/98) = log2(x) - log2(98) = log2(x) - (log2(7) +log2(14) )
14^log2(7) = x^(logx(14) * log2(7))
x^(log2(x) - (log2(7) +log2(14)) + log14(x) * log2(7) ) = 1
ОДЗ : x>0
log2(x) - (log2(7) +log2(14)) + logx(14) * log2(7) = 0
Проверим x= 1
x^(log2(x/98))*14^(log2(7)) = 1
14^(log2(7)) ≠ 1 → x≠1, но тогда log2(x)≠0
Значит, можно не боясь за приобретение постороннего решения умножить обе части уравнения на log2(x) .
Учитывая, что logx(14)*log2(x) = log2(x)/log14(x) = log2(14) , имеем :
( log2(x) )^2 - (log2(7) +log2(14))*log2(x) + log2(7)*log2(14) = 0
В силу теоремы Виета очевидно, что
1) log2(x) = log2(7)
x1=7
2) log2(x) = log2(14)
x2=14