Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Показать больше
Показать меньше
vladamaslanik
11.05.2022 20:11 •
Алгебра
В арифметичній прогресії відомі a_{1} = 4 , S_{n}= 270; d = 2; Знайдіть n та a_{n}
Показать ответ
Ответ:
Dataxxx
05.05.2021 21:51
1) mn²/n² - m²·(2/m-2/n) = mn²/n² - (m² · 2)/m + (2 · m²)/n = mmn²/mn² - 2m²n²/
/mn² + 2nmm²/mn² = (mmn² - 2m²n² + 2nmm²)/mn² = (m²n² - 2m²n² + 2m³n)/mn²
= (2m³n - m²n)/mn² = mn(2m² - m)/mn² = (2m² - m)/n
2) (u/u - v - u/u + v) · u² + uv/2v = uu²/u - vu²/1 - uu²/u + vu²/1 + uv/2v = uu²2v/u2v- - u2vvu²/u2v - uu²2v/u2v + vu²u2v/u2v + uuv/u2v = (uu²2v - u2vvu² - uu²2v +
+ vu²u2v + uuv)/2uv = (2u³v - 2u³v² - 2u³v + 2u³v² + u²v)/2uv = u²v/2uv = u/2
3) (a + b)² ÷ (1/a² + 1/b² + 2/ab) = (a + b)(a + b)/1 ÷ (b²/a²b² + a²/a²b² + 2ab/a²b²) =
= (a + b)(a + b)/1 ÷ (a² + 2ab + b²)/a²d² = (a + b)(a + b)/1 ÷ (a + b)(a + b)/a²d² = (a + b)(a + b)/1 · a²d²/(a + b)(a + b) = (a + b)(a + b)a²d²/(a + b)(a + b) = a²d²
0,0
(0 оценок)
Ответ:
Timoxin
21.05.2020 09:46
1)Найдём значения функции на концах отрезка:
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.
0,0
(0 оценок)
Популярные вопросы: Алгебра
rostislav2017
22.05.2021 08:43
Контрольная работа №8 по алгебре по теме « решение неравенств и систем неравенств с одной переменной решить первый вариант за ранее...
ромкапомка1
01.06.2021 02:28
Найдите сумму пяти первых членов геометрической прогрессии:1\16: -1\8: 1\4...
bbcc2
11.04.2021 11:50
Решить уравнение: А) 21-2(у - 3) = 24 – 3у Б) у+0,89–(1,08у + 5,07) = 3,92у 2. Решить задачи с уравнения 1. Сумма двух чисел 50,2 и одно из них на 9,72 больше другого. Найдите...
Акося3557
31.03.2022 10:35
Определите знаки выражения: cos40°×sin120°×tg150°...
7773530
31.03.2022 10:35
Решите уравнение: (х+5)+(2х-1/3)=0...
TOPTopTOP1vvv
09.01.2023 14:03
Графики функций параллельныy=2x-1 и у=кх+3. Чему равенкоэффициент к...
mashav882
09.01.2023 14:03
Рациональное уравнение...
anettaaa1
19.02.2021 16:40
это Найти тангенс угла наклона касательной, проведённой к графику функции f(x)=( x-4)(x^2+4x+16) в точке с абсциссой х0=2...
vaselzhiriy
13.07.2021 08:05
Вычисли длину стороны квадрата и площадь квадрата, если его периметр равен 80 см...
ulyanablem
05.06.2020 23:18
Вычисли 3-й член арифметической прогрессии, если известно, что a1 = 1,4 и d = 2,4. a3 =...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
/mn² + 2nmm²/mn² = (mmn² - 2m²n² + 2nmm²)/mn² = (m²n² - 2m²n² + 2m³n)/mn²
= (2m³n - m²n)/mn² = mn(2m² - m)/mn² = (2m² - m)/n
2) (u/u - v - u/u + v) · u² + uv/2v = uu²/u - vu²/1 - uu²/u + vu²/1 + uv/2v = uu²2v/u2v- - u2vvu²/u2v - uu²2v/u2v + vu²u2v/u2v + uuv/u2v = (uu²2v - u2vvu² - uu²2v +
+ vu²u2v + uuv)/2uv = (2u³v - 2u³v² - 2u³v + 2u³v² + u²v)/2uv = u²v/2uv = u/2
3) (a + b)² ÷ (1/a² + 1/b² + 2/ab) = (a + b)(a + b)/1 ÷ (b²/a²b² + a²/a²b² + 2ab/a²b²) =
= (a + b)(a + b)/1 ÷ (a² + 2ab + b²)/a²d² = (a + b)(a + b)/1 ÷ (a + b)(a + b)/a²d² = (a + b)(a + b)/1 · a²d²/(a + b)(a + b) = (a + b)(a + b)a²d²/(a + b)(a + b) = a²d²
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.