Число 6 - рациональное. А вот число - иррациональное. Разность рационального и рационального - есть число иррациональное.
Докажем, что число иррациональное.
Предположим, что , где a и b - целые числа, причём они не являются одновременно чётными.
Возведём обе части в квадрат:
Число чётное, следовательно, чётно а², и,значит, чётно а. Пусть тогда а = 2с. Тогда мы имеем:
Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.
Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число иррациональное, а вместе с ним иррационально и исходное выражение.
Число 6 - рациональное. А вот число - иррациональное. Разность рационального и рационального - есть число иррациональное.
Докажем, что число иррациональное.
Предположим, что , где a и b - целые числа, причём они не являются одновременно чётными.
Возведём обе части в квадрат:
Число чётное, следовательно, чётно а², и,значит, чётно а.
Пусть тогда а = 2с. Тогда мы имеем:
Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.
Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число иррациональное, а вместе с ним иррационально и исходное выражение.
1.
ОДЗ: арксинус определен при
Найдем синус левой и правой части:
Уравнение распадается на два. Для первого уравнения получим:
Решаем второе уравнение:
Таким образом, уравнение имеет единственный корень 0.
ответ: 0
2.
ОДЗ: арксинус определен при
Найдем синус левой и правой части:
Так как в правой части стоит положительная величина, то и левая часть должна быть положительной, то есть .
Возведем в квадрат обе части:
Решим биквадратное уравнение:
Находим х:
Однако, так как было выявлено ограничение , то отрицательный корень не попадает в ответ.
Оценив значение полученного корня, мы понимаем, что он удовлетворяет исходной ОДЗ:
ответ: