Обозначаем прямую х= -2 +t ; y= 4+3t ; z= -3+2t через a . Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] . * * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * * Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0. β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение). A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B). любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек
Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] .
* * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * *
Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0.
β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение).
A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B).
любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.