(х+2)*(х-7)>0 Найдём нули произведения ( для этого прировняем к 0 ) (х+2)*(х-7)=0 Произведение тогда равно 0, когда один из его множителей равен 0, следовательно х+2=0 х-7=0 х=-2 х=7 Чертим координатную прямую и решаем неравенство методом интервалов + - + °°> -2 7 Ставим получившиеся корни, точки незакрашенные, так как знак неравенства строгий, правый +, так как коэффициент перед х положительный ( =1 ) Теперь можно записать ответ Так как у нас >0, то ответом будет х принадлежит ( -∞ ; -2) U ( 7; +∞ )
Найдём нули произведения ( для этого прировняем к 0 )
(х+2)*(х-7)=0
Произведение тогда равно 0, когда один из его множителей равен 0, следовательно
х+2=0 х-7=0
х=-2 х=7
Чертим координатную прямую и решаем неравенство методом интервалов
+ - +
°°>
-2 7
Ставим получившиеся корни, точки незакрашенные, так как знак неравенства строгий, правый +, так как коэффициент перед х положительный ( =1 )
Теперь можно записать ответ
Так как у нас >0, то ответом будет
х принадлежит ( -∞ ; -2) U ( 7; +∞ )
Объяснение:
Чтобы упростить выражение ((x + y)/(x - y) - (x - y)/(x + y)) : xy/(x^2 - y^2) выполним сначала действие в скобках.
Приведем дроби к общему знаменателю. Для этого домножим первую дробь на (х + у), а вторую на (х - у):
(x + y)/(x - y) - (x - y)/(x + y) = ((х + y)^2 - (x - y)^2))/(x^2 - y^2) = (x^2 + 2xy + y^2 - x^2 + 2xy - y^2)/(x^2 - y^2) = 4xy/(x^2 - y^2).
Теперь выполним деление дробей. Как известно при деление дроби на дробь действие деление заменяется умножением и вторая дробь переворачивается.
4xy/(x^2 - y^2) * (x^2 - y^2)/xy = 4.