Почтальон расстояние от почты до совхоза проехал на мотоцикле со скоростью 30 км/ч. Назад он возвращался пешком со скоростью, составляющей 20% скорости его движения на мотоцикле. Поэтому на обратный путь почтальон затратил на 1ч 12 мин. Больше времени, чем на путь от почты до совхоза. Найдите расстояние от почты до совхоза.
30*20:100=6(км/ч) — скорость движения почтальона5х-х=45Время=расстояние: скоростьх/6-х/30=1,5х=11,25(км) — расстояние?км — 20%30км-100%х км — расстояние,одинаковое в оба конца
Так как π=180°, то 1800°=10π, то есть sin(1800°+45°)=sin(10π+45°)
Дальше есть несколько путей нахождения необходимого значения. Во-первых, период синуса - 2π, то есть sin(2π+x)=sin(x), тогда sin(10π+45°)=sin(45°)=√2/2
Во-вторых, можно раскрыть по формуле синуса суммы:
В-третьих, можно узнать значение функции с формул приведения. Так как аргумент отсчитывается от горизонтальной оси, смены функции на кофункцию (косинус) не будет; изначальная функция положительна (I четверть на тригонометрической окружности), поэтому знак будет тоже "+".
Почтальон расстояние от почты до совхоза проехал на мотоцикле со скоростью 30 км/ч. Назад он возвращался пешком со скоростью, составляющей 20% скорости его движения на мотоцикле. Поэтому на обратный путь почтальон затратил на 1ч 12 мин. Больше времени, чем на путь от почты до совхоза. Найдите расстояние от почты до совхоза.
30*20:100=6(км/ч) — скорость движения почтальона5х-х=45Время=расстояние: скоростьх/6-х/30=1,5х=11,25(км) — расстояние?км — 20%30км-100%х км — расстояние,одинаковое в оба концаОбъяснение:
sin1845° можно представить как sin(1800°+45°)
Так как π=180°, то 1800°=10π, то есть sin(1800°+45°)=sin(10π+45°)
Дальше есть несколько путей нахождения необходимого значения. Во-первых, период синуса - 2π, то есть sin(2π+x)=sin(x), тогда sin(10π+45°)=sin(45°)=√2/2
Во-вторых, можно раскрыть по формуле синуса суммы:
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
sin(10π+45°)=sin(10π)cos(45°)+cos(10π)sin(45°)=0*√2/2+1*√2/2=√2/2
В-третьих, можно узнать значение функции с формул приведения. Так как аргумент отсчитывается от горизонтальной оси, смены функции на кофункцию (косинус) не будет; изначальная функция положительна (I четверть на тригонометрической окружности), поэтому знак будет тоже "+".