(1; 4); (4; 1)
{ x√x + y√y = 9
{ x√y + y√x = 6
Переходим к новым переменным
a = √x; x = a^2; x√x = a^3
b = √y; y = b^2; y√y = b^3
{ a^3 + b^3 = 9
{ a^2*b + ab^2 = 6
Умножим второе уравнение на 3
{ 3a^2*b + 3ab^2 = 18
Складываем уравнения
a^3 + b^3 + 3a^2*b + 3ab^2 = 9 + 18
Слева записан куб суммы
(a + b)^3 = 27
a + b = 3
b = 3 - a
Подставляем
a^2*(3 - a) + a(3 - a)^2 = 6
a(3 - a)(a + 3 - a) = 6
3a(3 - a) = 6
a(3 - a) = 2
-a^2 + 3a = 2
a^2 - 3a + 2 = 0
(a - 1)(a - 2) = 0
1) a = 1; b = 2
x = a^2 = 1; y = b^2 = 4
(1; 4) - это решение.
2) a = 2; b = 1
x = a^2 = 4; y = b^2 = 1
(4; 1) - это решение.
y = x4 – 8x2 + 5
1.Найдем точки экстремума функции, т.е. точки, в которых y’ = 0:
y’ = (x4 – 8x2 + 5)’ = 4x3 – 16x.
4x3 – 16x = 0;
4х (х2 – 4) = 0;
4х (х – 2) (х + 2) = 0;
х1 = 0;
х2 = -2;
х3 = 2.
2. Промежутку [-3; 2] принадлежат все найденные точки, поэтому рассмотрим значение функции на концах отрезка и в точках экстремума.
При х = -3, у = 81 – 72 + 5 = 14.
При х = -2, у = 16 – 32 + 5 = -11.
При х = -0, у = 5.
При х = 2, у = 16 – 32 + 5 = -11.
Таким образом, yнаим = у(-2) = у(2) = -11, yнаиб = у(-3) = 14.
ответ: yнаим = -11, yнаиб = 14
(1; 4); (4; 1)
{ x√x + y√y = 9
{ x√y + y√x = 6
Переходим к новым переменным
a = √x; x = a^2; x√x = a^3
b = √y; y = b^2; y√y = b^3
{ a^3 + b^3 = 9
{ a^2*b + ab^2 = 6
Умножим второе уравнение на 3
{ a^3 + b^3 = 9
{ 3a^2*b + 3ab^2 = 18
Складываем уравнения
a^3 + b^3 + 3a^2*b + 3ab^2 = 9 + 18
Слева записан куб суммы
(a + b)^3 = 27
a + b = 3
b = 3 - a
Подставляем
a^2*(3 - a) + a(3 - a)^2 = 6
a(3 - a)(a + 3 - a) = 6
3a(3 - a) = 6
a(3 - a) = 2
-a^2 + 3a = 2
a^2 - 3a + 2 = 0
(a - 1)(a - 2) = 0
1) a = 1; b = 2
x = a^2 = 1; y = b^2 = 4
(1; 4) - это решение.
2) a = 2; b = 1
x = a^2 = 4; y = b^2 = 1
(4; 1) - это решение.
y = x4 – 8x2 + 5
1.Найдем точки экстремума функции, т.е. точки, в которых y’ = 0:
y’ = (x4 – 8x2 + 5)’ = 4x3 – 16x.
4x3 – 16x = 0;
4х (х2 – 4) = 0;
4х (х – 2) (х + 2) = 0;
х1 = 0;
х2 = -2;
х3 = 2.
2. Промежутку [-3; 2] принадлежат все найденные точки, поэтому рассмотрим значение функции на концах отрезка и в точках экстремума.
При х = -3, у = 81 – 72 + 5 = 14.
При х = -2, у = 16 – 32 + 5 = -11.
При х = -0, у = 5.
При х = 2, у = 16 – 32 + 5 = -11.
Таким образом, yнаим = у(-2) = у(2) = -11, yнаиб = у(-3) = 14.
ответ: yнаим = -11, yнаиб = 14