Таня и Вера играют в игру. У Тани есть карточки с числами от 1 до 30. Она расставляет их в некотором порядке по кругу. Для каждых двух соседних чисел Вера считает их разность, вычитая из большего числа меньшее, и выписывает получившиеся 30 чисел себе в блокнот. После этого Вера отдает Тане количество конфет, равное наименьшему числу из выписанных в блокнот. Таня выкладывает карточки так, чтобы получить как можно больше конфет. Какое наибольшее количество конфет она может получить?
Обращаю ваше внимание на карточку с числом 15. Разница между ним и всеми оставшимися числами не более 14 (30 пока что во внимание не берем).
Значит, любая разность с участием числа 15 будет не более 14 (опять же на 30 внимание пока что не обращаем).
Таким образом наиболее выгодный вариант расстановки для Тани - 14 конфет, ибо нет возможности составить ряд с разностью в 15.
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Таня и Вера играют в игру. У Тани есть карточки с числами от 1 до 30. Она расставляет их в некотором порядке по кругу. Для каждых двух соседних чисел Вера считает их разность, вычитая из большего числа меньшее, и выписывает получившиеся 30 чисел себе в блокнот. После этого Вера отдает Тане количество конфет, равное наименьшему числу из выписанных в блокнот. Таня выкладывает карточки так, чтобы получить как можно больше конфет. Какое наибольшее количество конфет она может получить?
Обращаю ваше внимание на карточку с числом 15. Разница между ним и всеми оставшимися числами не более 14 (30 пока что во внимание не берем).
Значит, любая разность с участием числа 15 будет не более 14 (опять же на 30 внимание пока что не обращаем).
Таким образом наиболее выгодный вариант расстановки для Тани - 14 конфет, ибо нет возможности составить ряд с разностью в 15.
Её ряд: 1, 16, 2, 17, 3, 18, …, 14, 29, 15, 30.
ответ: 14.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1