Для нахождения экстремумов функций надо взять производную этой функции и приравнять её 0. а) f(x)=x^3+3x^2 f'(x)=3x^2+6x 3x^2+6x = 0 3x(x+2) = 0 3x = 0 x₁ = 0 - это локальный минимум у₁ = 0 x + 2 = 0 x₂ = -2 - это локальный максимум у₂ = 4. б) f(x)=5x^2-20x-3 f'(x) =10x-20 10x-20 = 0 10x = 20 x = 2 y = 5*2²-20*2-3 = 20-40-3 = -23 - это вершина параболы. в) f(x)=1/x+x/2 f'(x) =(1/2) - (1/x²)
x² - 2 = 0 x² = 2 x = +-√2 x₁ = -√2 y₁ = -√2 - это локальный максимум ветви гиперболы с отрицательными значениями по оси абсцисс. x₂ = √2 y₂ = √2 - это локальный минимум ветви гиперболы с положительными значениями по оси абсцисс.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
а) f(x)=x^3+3x^2
f'(x)=3x^2+6x
3x^2+6x = 0
3x(x+2) = 0
3x = 0 x₁ = 0 - это локальный минимум у₁ = 0
x + 2 = 0 x₂ = -2 - это локальный максимум у₂ = 4.
б) f(x)=5x^2-20x-3
f'(x) =10x-20
10x-20 = 0
10x = 20
x = 2 y = 5*2²-20*2-3 = 20-40-3 = -23 - это вершина параболы.
в) f(x)=1/x+x/2
f'(x) =(1/2) - (1/x²)
x² - 2 = 0
x² = 2
x = +-√2 x₁ = -√2 y₁ = -√2 - это локальный максимум ветви гиперболы с отрицательными значениями по оси абсцисс.
x₂ = √2 y₂ = √2 - это локальный минимум ветви гиперболы с положительными значениями по оси абсцисс.