Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
углы ADB=DBC как накрестлежащие при параллельных основаниях трапеции и секущей BD => углы ADB=ABD => треугольник ABD имеет равные углы при основании BD => треугольник ABD равнобедренный и AB=AD (против равных углов лежат равные стороны) =>
в трапеции AB=CD=AD и периметр P=42=3+3*AB
AB = 39/3 = 13
высоту найдем из прямоугольного треугольника ABK: AB=13, AK=(13-3)/2 = 5
высота BK = корень(13*13 - 5*5) = корень(144) = 12
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
обозначим трапецию ABCD, BC=3, AB=CD ---равнобокая трапеция
диагональ BD делит угол ABC пополам => углы ABD=DBC
углы ADB=DBC как накрестлежащие при параллельных основаниях трапеции и секущей BD => углы ADB=ABD => треугольник ABD имеет равные углы при основании BD => треугольник ABD равнобедренный и AB=AD (против равных углов лежат равные стороны) =>
в трапеции AB=CD=AD и периметр P=42=3+3*AB
AB = 39/3 = 13
высоту найдем из прямоугольного треугольника ABK: AB=13, AK=(13-3)/2 = 5
высота BK = корень(13*13 - 5*5) = корень(144) = 12
Sтрапеции = 12*(13+3)/2 = 6*16 = 96