В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
dralov574
dralov574
17.07.2020 11:38 •  Алгебра

Верно ли равенство:
|a+b|=|a|+|b|

Показать ответ
Ответ:
Artem0317q
Artem0317q
22.12.2020 20:44

НЕТ НЕ ВЕРНО

|a + b| ≤ |a| + |b| это ВЕРНО

Существует 4 варианта знаков + и - для чисел a и b

1 вариант

Если a > 0 и b > 0

их модули совпадают с их значениями: |a| = a, |b| = b

Из этого следует, что |a + b| = |a| + |b|

2 вариант

Если a < 0 и b > 0

выражение |a + b| можно записать как |b – a|

А выражение  |a| + |b| равно сумме абсолютных значений a и b, что больше, чем |b – a|

3 вариант (похож на 2 вариант)

Если a > 0 и b < 0  |a + b|

выражение |a + b|  принимает вид |a – b|

А выражение  |a| + |b| равно сумме абсолютных значений a и b что также больше чем |a - b|

Поэтому |a + b| < |a| + |b|

4 вариант

Если a < 0 и b < 0

тогда |a + b| = |–a – b| = |-(a + b)|

Но в варианте 1 доказано, что |a + b| = |a| + |b|, следовательно и |–a – b| = |a| + |b|

значит  |a + b| ≤ |a| + |b|  в зависимости от знаков a и b

а вот |ab| = |a|*|b|

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота