Вероятность того, что футбольном матче команда X выиграет команду Y составляет 0,45. Если вероятность ничьи составляет 0,2, то вероятность выигрыша команды Y равна .
Сначала нужно выполнить чертеж (смотрите рисунок). Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы y=4-x² и прямой y=2-x. Это можно сделать двумя Первый это посмотреть на график где линии пересекаются, второй это аналитический В данном случае можно воспользоваться графическим так как на графике ясно видно, что парабола и прямая пересекаются в точке (-1 ; 3) и (2 ; 0).Но бывают случаи, когда точкой пересечения будет, например, точка (-3,14 ; 1), тогда графически вы не сможете определить точки пересечения, в таком случае используется аналитический метод. Попробуем применить аналитический для вычисления точек пересечения. Для этого мы приравниваем уравнения y=4-x² и y=2-x 4-x²=2-x x²-x+2-4=0 x²-x-2=0 применим теорему Виета для решения квадратного уравнения x₁+x₂=1 x₁x₂= -2 x₁=2 x₂= -1
Теперь посмотрим где расположена фигура. Нам важно, какой график выше (относительно другого графика), а какой – ниже.
Из графика видно, что выше расположена парабола y=4-x² , а ниже прямая y=2-x.
Формула для вычисления площади: где это функция которая расположена выше, чем функция
таким образом для исчисления площади нужно взять интеграл
ответ: площадь фигуры, ограниченной линиями у = 4 - х² и у = 2 - х равна 4. 5
Т. к. функция - есть корень квадратный, то подкоренное выражение должно быть неотрицательным, т. е. 4х-х^2>=0 Решим данное неравенство методом интервалов: рассмотрим функцию g=4x-x^2 или g=x(4-x) Функция g обращается в ноль в точках х=0 и х=4, которые числовую прямую разбивают на три промежутка: (-бесконечность, 0], [0,4] и [4,+бесконечность). Определим знак функции g на каждом промежутке: (-бесконечность, 0]: g(-1)=-1*5<0 [0,4]: g(1)=1*3>0 [4,+бесконечности) : g(5)=5*(-1)<0. Таким образом, D(y) =[0,4].
Первый это посмотреть на график где линии пересекаются, второй это аналитический В данном случае можно воспользоваться графическим так как на графике ясно видно, что парабола и прямая пересекаются в точке (-1 ; 3) и (2 ; 0).Но бывают случаи, когда точкой пересечения будет, например, точка (-3,14 ; 1), тогда графически вы не сможете определить точки пересечения, в таком случае используется аналитический метод.
Попробуем применить аналитический для вычисления точек пересечения. Для этого мы приравниваем уравнения y=4-x² и y=2-x
4-x²=2-x
x²-x+2-4=0
x²-x-2=0
применим теорему Виета для решения квадратного уравнения
x₁+x₂=1
x₁x₂= -2
x₁=2
x₂= -1
Теперь посмотрим где расположена фигура. Нам важно, какой график выше (относительно другого графика), а какой – ниже.
Из графика видно, что выше расположена парабола y=4-x² , а ниже прямая y=2-x.
Формула для вычисления площади: где это функция которая расположена выше, чем функция
таким образом для исчисления площади нужно взять интеграл
ответ: площадь фигуры, ограниченной линиями у = 4 - х² и у = 2 - х равна 4.5
4х-х^2>=0
Решим данное неравенство методом интервалов: рассмотрим функцию
g=4x-x^2 или g=x(4-x)
Функция g обращается в ноль в точках х=0 и х=4, которые числовую прямую разбивают на три промежутка:
(-бесконечность, 0], [0,4] и [4,+бесконечность).
Определим знак функции g на каждом промежутке:
(-бесконечность, 0]: g(-1)=-1*5<0
[0,4]: g(1)=1*3>0
[4,+бесконечности) : g(5)=5*(-1)<0.
Таким образом,
D(y) =[0,4].