y^4-6y^2-2y+7 = 0 . Сразу можно заметить ,что один из корней 1.Предположим ,что это выражение y-1 .Тогда (y-1)*a = y^4-6*y^2-2*y+7 .а = y^3+y^2-5y-7 .Тогда y^4-6y^2-2*y+7 = (y-1)*(y^3+y^2-5y-7) = 0. Будем искать корни (y^3+y^2-5y-7) по формуле Кардано. Вычисления очень сложные ,поэтому я их опущу,можете почитать о этой формуле в интернете .В общем второй корень приблизительно равен y = 2.37. Найдем теперь а1 = 1,а2 = 5.6169. Вернемся к уравнению a = -x^2+6x-8 ,тогда получаем x^2-6x+9 = 0 , x = 3 и x = 0.43,x = 5.57 ,однако подставляя второй и третий корень в исходное уравнение видим ,что в таком случае подкоренное выражение <0,такие корни не подходят.
Я буду искать только действительные корни :
sqrt(x-2)+sqrt(4-x)=x^2-6x+11
Возведем в квадрат:
2+2sqrt((x-2)(4-x)) = (x^2-6*x+11)^2
2+2sqrt(-x^2+6x-8) = (x^2-6*x+11)^2
Пусть a = -x^2+6x-8 ,тогда :
2+sqrt(a) = (a+3)^2
2+sqrt(a) = 9+a^2-6*a
a^2-6a-2sqrt(a)+7 = 0
Пусть sqrt(a) = y,тогда :
y^4-6y^2-2y+7 = 0 . Сразу можно заметить ,что один из корней 1.Предположим ,что это выражение y-1 .Тогда (y-1)*a = y^4-6*y^2-2*y+7 .а = y^3+y^2-5y-7 .Тогда y^4-6y^2-2*y+7 = (y-1)*(y^3+y^2-5y-7) = 0. Будем искать корни (y^3+y^2-5y-7) по формуле Кардано. Вычисления очень сложные ,поэтому я их опущу,можете почитать о этой формуле в интернете .В общем второй корень приблизительно равен y = 2.37. Найдем теперь а1 = 1,а2 = 5.6169. Вернемся к уравнению a = -x^2+6x-8 ,тогда получаем x^2-6x+9 = 0 , x = 3 и x = 0.43,x = 5.57 ,однако подставляя второй и третий корень в исходное уравнение видим ,что в таком случае подкоренное выражение <0,такие корни не подходят.
ответ : 3
x = -π/30 + πn/5, n∈Z
x = π/3 + πm/2, m∈Z
Объяснение:
Разделим уравнение на 2, получим:
sin(7x) + √3/2*cos(3x) + 1/2*sin(3x) = 0
√3/2 и 1/2 можно заменить на sin(π/3) и cos(π/3) соответственно.
sin(7x) + sin(π/3) * cos(3x) + cos(π/3) * sin(3x) = 0
Дальше можно собрать формулу синуса суммы:
sin(7x) + sin(3x+π/3) = 0
Перенесем sin(3x+π/3) в правую сторону с противоположным знаком и с учетом нечетности синуса.
sin(7x) = sin(-3x - π/3)
Из последнего уравнения можно получить совокупность решений для x:
1) 7x = -3x - π/3 + 2πn
10x = -π/3 + 2πn
x = -π/30 + πn/5, n∈Z
2) 7x = π - (-3x - π/3) + 2πm
4x = 4π/3 + 2πm
x = π/3 + πm/2, m∈Z