4x³+8x²-x-2=0 Решаем уравнение высших степеней. Находим целые корни: свободный член -2, его делители 1, -1, 2, -2 Подставляем их в исходное равенство до получения тождества. При х=-2: 4*(-2)³+8*(-2)²-(-2)-2=-32+32+2-2=0 То есть х=-2 является корнем. Далее разделим многочлен 4x³+8x²-x-2 на (х+2) 4x³+8x²-x-2 |x+2 - ------ 4x³+8x² 4x²-1 ---------- -x-2 -x-2 ------- 0 4x³+8x²-x-2=(x+2)(4x²-1)=(x+2)*(2x-1)(2x+1) (x+2)(2x-1)(2x+1)=0 x+2=0 2x-1=0 2x+1=0 x=-2 2x=1 2x=-1 x=1/2 x=-1/2
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
ОДЗ: x-2≠0 x+3≠0
x≠2 x≠-3
4x³+8x²-x-2=0
Решаем уравнение высших степеней.
Находим целые корни: свободный член -2, его делители 1, -1, 2, -2
Подставляем их в исходное равенство до получения тождества.
При х=-2: 4*(-2)³+8*(-2)²-(-2)-2=-32+32+2-2=0
То есть х=-2 является корнем.
Далее разделим многочлен 4x³+8x²-x-2 на (х+2)
4x³+8x²-x-2 |x+2
- ------
4x³+8x² 4x²-1
----------
-x-2
-x-2
-------
0
4x³+8x²-x-2=(x+2)(4x²-1)=(x+2)*(2x-1)(2x+1)
(x+2)(2x-1)(2x+1)=0
x+2=0 2x-1=0 2x+1=0
x=-2 2x=1 2x=-1
x=1/2 x=-1/2
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4