В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
дима2901
дима2901
15.12.2021 00:54 •  Алгебра

Восстановите последовательность в правой части равенства (2p-3q)³

Показать ответ
Ответ:
vddrobysheva
vddrobysheva
15.02.2022 02:55

y^2+2xy+y^2=(x+y)^2=9

x+y=sqrt(9)=3

Объяснение:

1) =1,2b(b^3-a^3)=1,2b(b-a)(b^2+ab+b^2)

2) =1,8x^4y^2(2y-1)(2y+1)

пусть х(см) - длина параллелепипеда. тогда х-5(см) - ширина параллелепипеда, х+2(см) - высота параллелепипеда. так как объём равен 240 см^3, составим уравнение:

х * (х-5) * (х+2) = 240

1989*1989=1989(1988+1)=1989(2*994+1)=1989*2*994+1989

теперь из полученного выражения вычтем один, причем вычесть его мы можем из любого слагаемого 1989*2*994+1989-1=1989*2*994+1988=1989*2*994+2*994 как мы видим, оба слагаемых кратны 994, следовательно и сумма будет делится 994, аналогично мы можем возвести в любую степень или домножить на любое число  

0,0(0 оценок)
Ответ:
mmv2721ozx8sx
mmv2721ozx8sx
19.12.2021 14:42

Найдем, в каких пределах может изменяться сума цифр трехзначного числа:

- минимальная сумма цифр равна 1 (у числа 100)

- максимальная сумма цифр равна 27 (у числа 999)

Найдем наибольшую сумму цифр среди чисел от 1 до 27. Очевидно, что нужно по возможности максимально увеличить разряд единиц и разряд десятков. Таким образом, образуется два кандидата: числа 19 и 27.

- сумма цифр числа 19 равна 1+9=10

- сумма цифр числа 27 равна 2+7=9

Итак, наибольшая сумма цифр суммы цифр равна 10. Значит, искомая сумма цифр равна 19.

Трехзначные числа с суммой цифр 19 можно разделить на две группы: содержащие одинаковые цифры и не содержащие одинаковые цифры.

Рассмотрим случай, когда в записи числа используются одинаковые цифры:

9-9-1, 9-5-5, 8-8-3, 7-7-5, 7-6-6 - итого 5 случаев, для каждого из которых существует перестановок цифр указать место для уникальной цифры). Всего для этих вариантов имеем 5·3=15 чисел

Рассмотрим случай, когда в записи числа не используются одинаковые цифры:

9-8-2, 9-7-3, 9-6-4, 8-7-4, 8-6-5 - итого, 5 случаев, для каждого из которых существует перестановок цифр. Всего для этих вариантов имеем 5·6=30 чисел

Таким образом, всего есть 15+30=45 чисел, удовлетворяющих поставленному условию.

ответ: 45

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота