В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Fetissh1
Fetissh1
18.09.2020 02:54 •  Алгебра

Вот надо решить 1: \frac{4a^{2}-9n }{2a^{2}-5a+2 } 2: \frac{4n^{2}-9n+2 }{2+9n-5n^{2} }

Показать ответ
Ответ:
Хорошоучусь
Хорошоучусь
02.11.2020 23:50

1.Найти экстремумы функций:

1) f(x)=х^3-х^2-х +2 2) f(x)= (8 -7х)*е^х

2.Найти интервалы возрастания и убывания функции f(x)=х^3-х^2-х +2

1

1)f`(x)=3x²-2x-1=0

D=4+12=16

x1=(2-4)/6=-1/3

x2=(2+4)/6=1

+ _ +

(-1/3)(1)

max min

ymax=-1/27-1/9+1/3+2=(-1-3+9+54)/27=59/27

ymin=1-1-1+2=1

2)f`(x)=-7e^x+(8-7x)e^x=e^x*(-7+8-7x)=0

1-7x=0

x=1/7

+ _

(1/7)

max

ymax=(8-1)*e^(1/7)=e^(1/7)

2

f`(x)=3x²-2x-1=0

D=4+12=16

x1=(2-4)/6=-1/3

x2=(2+4)/6=1

+ _ +

(-1/3)(1)

возр убыв возр

3

смотреть 1

x=-1/3∈[-1;3/2]

x=1∈[-1;3/2]

y(-1)=-1-1+1+2=1

y(-1/3)=59/27 наиб

4

y(1)=1

y(3/2)=27/8-9/4-3/2+2=(27-27-12+16)/8=1/2 наим

5

f`(x)=3x²-2x-1

f``(x)=6x-2 прямая проходит через точки (0:-2) и (1;4)

0,0(0 оценок)
Ответ:
taniussa1
taniussa1
16.04.2023 07:24

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота