коэффициенты пульсации напряжения и тока связаны между собой в виде
к
л
(8-28)
характер зависимости коэффициентов пульсации друг от друга при разных коэффициентах использования напряжения питания показан на графиках (рис 8-5, б). из этого графика следует, что малые значения коэффициентов пульсации возможны при низком использовании питающего напряжения.
процессы в накопителе при его разряде на нагрузку с импульсом прямоугольной формы описываются исходным уравнением
dl du
е
и
hrz или r
(8-29)
полагая
и
с с
и
и(; --с);
de di
,1 i
после к виду
несложных преобразований исходное уравнение можно
r \
rrh 1 crrii
h7
или
crrn
(8-30)
где обозначено
решение уравнения (3) имеет вид:
i p-at
3. мйн*
r3 +
.-ah.
); 1
з.мин
(1 - n).
зарядный ток г'з оказывается минимальным в момент времени / = о, когда еще только начинается разряд конденсатора, т. е. до начала протекания импульса тока по нагрузке.
при подстановке значения тока и представлении его в относительном масштабе, получим:
(8.31)
а при < 1
л
подставляя значение тока i% в .mi уравнение (и^ -
е - isra) и выражая напряжение в относительном масштабе, можно найти
uq к
1 - (1 - п) е- = j-- (1 -
или при к > > 1
и^ е
(8-32)
во время /== tji-т- г , т. е. в промей< : утках между импульсами тока в нагрузке, конденсатор будет заряжаться и ток заряда будет уменьшаться с ростом напряжения uq на конденсаторе. в эти моменты времени ток через зарядное сопротивление описывается уравнением
ь - сиакс^ - смакс^
где 1 - вpeш, изменяющееся в пределах от до г^. учитывая, что / = ; к ;
смакс =r-j~ = пи -j- . получим
/пи
в 5ти же отрезки времени напряжение иа конденсаторе будет
3. мин
е
т
з.м1ш
л
1 + kni
коэффициенты пульсации напряжения и тока связаны между собой в виде
к
л
(8-28)
характер зависимости коэффициентов пульсации друг от друга при разных коэффициентах использования напряжения питания показан на графиках (рис 8-5, б). из этого графика следует, что малые значения коэффициентов пульсации возможны при низком использовании питающего напряжения.
процессы в накопителе при его разряде на нагрузку с импульсом прямоугольной формы описываются исходным уравнением
dl du
е
и
hrz или r
(8-29)
полагая
и
с с
и
и(; --с);
de di
,1 i
после к виду
несложных преобразований исходное уравнение можно
r \
rrh 1 crrii
h7
или
crrn
(8-30)
где обозначено
решение уравнения (3) имеет вид:
i p-at
3. мйн*
r3 +
.-ah.
); 1
з.мин
(1 - n).
зарядный ток г'з оказывается минимальным в момент времени / = о, когда еще только начинается разряд конденсатора, т. е. до начала протекания импульса тока по нагрузке.
при подстановке значения тока и представлении его в относительном масштабе, получим:
(8.31)
а при < 1
л
подставляя значение тока i% в .mi уравнение (и^ -
е - isra) и выражая напряжение в относительном масштабе, можно найти
uq к
1 - (1 - п) е- = j-- (1 -
или при к > > 1
и^ е
(8-32)
во время /== tji-т- г , т. е. в промей< : утках между импульсами тока в нагрузке, конденсатор будет заряжаться и ток заряда будет уменьшаться с ростом напряжения uq на конденсаторе. в эти моменты времени ток через зарядное сопротивление описывается уравнением
ь - сиакс^ - смакс^
где 1 - вpeш, изменяющееся в пределах от до г^. учитывая, что / = ; к ;
смакс =r-j~ = пи -j- . получим
/пи
в 5ти же отрезки времени напряжение иа конденсаторе будет
с = - /з^з = 11 - (1 - пг) е- ].
или
-=1 (1 т)е- . (8-34)
В.3
1) (7+x)²=49+14x+x²
2) (8-x)²=64-16x+x²
3) 25b²+10bc+c²=(5b+c)²
4) 4z²-20z+25=(2z+5)²
5) 49x²-0.25=(7x-0.5)(7x+0.5)
6) (7x-3)(7x+3)=49x²-9
7) 8x³+64=(2x+4)(4x²-8x+16)
8) 27x³-125=(3x-5)(9x²+15x+25)
9) (x+3)³=x³+9x²+27x+27
10) (4-b)³=64-48b²+12b²-b³
B.4
1) (2y+3)²=4y²+12y+9
2) (3a-1)²=9a²-6a+1
3) 16a²+24ab+9b²=(4a+3b)²
4) 36a²-24ab+4b²=(6a+2b)²
5) 81a⁶-25b⁸=(9a³-5b⁴)(9a³+5b⁴)
6) (4b+5a)(5a-4b)=25a²+16b²
7) 27m³+8n³=(3m+2n)(9m²-6mn+4n²)
8) 64m³-p³=(4m-p)(16m²+4mp+p²)
9) (2a+1)³=8a³+12a²+6a+1
10) (2x-3)³=8x³-36x²+54x-27
В.5
1) (5x+4y)²=25x²+40xy+16y²
2) (8a-5b)²=64a²-80ab+25b²
3) 9x²+42xy+49y²=(3x+7y)²
4) 64x²-48xy+9y²=(8x+3y)²
5) 121x²-0.16y⁴=(11x-0.4y²)(11x+0.4y²)
6) (2n-3m)(3m+2n)=4n²-9m²
7) 125x³+216y³=(5x+6y)(25x²-30xy+32y²)
8) 27a³-64b³=(3a-4b)(9a²+12ab+16b²)
9) (4x+2y)³=64x³+96x²y+48xy²+8y³
10) (5a-3b)³=125a³-225a²b+135ab²-27b³