Если дана некая функция y=f(x),то при замене x функции на любую другу переменную или выражение ,все X переходят в эти переменные или выражения;если же выполняют какое-то действие на всей функцией y=f(x),например домножают её на что-то,делят,вычитают из неё,прибавляют к ней,возводят в степень или вносят под корень,то оно действует на всю функцию(объяснил ,как Кличко))0): f(x)=5x+6 1)f(a+1)=5(a+1)+6=5a+5+6=5a+11 f(5-a)=5(5-a)+6=25-5a+6=31-5a f(a)-6=(5(a)+6)-6=5a+6-6=5a f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2 2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8 f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24 f(1-2a)=5(1-2a)+6=5-10a+6=11-10a -f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12
f(x)=5x+6
1)f(a+1)=5(a+1)+6=5a+5+6=5a+11
f(5-a)=5(5-a)+6=25-5a+6=31-5a
f(a)-6=(5(a)+6)-6=5a+6-6=5a
f(a/10)-3=(5(a/10)+6)-3=a/2+3=(a+6)/2
2)f(a-3)+1=(5(a-3)+6)+1=5a-15+7=5a-8
f(a+4)-2=(5(a+4)+6)-2=5a+20+4=5a+24
f(1-2a)=5(1-2a)+6=5-10a+6=11-10a
-f(a+6/5)=-(5(a+6/5)+6)=-(5a+6+6)=-5a-12
y= -x² + 4x - 3
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
Объяснение: