В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
anikeevae
anikeevae
29.11.2020 17:42 •  Алгебра

Выбери верные утверждения для функции y= -2(X + 8)² Верных ответов: 2
График функции проходит через точку (2; -200)
Вершина параболы – точка (8; 0)
Множество значений функции(-бесконечность;0)
область определения функции (-оо; 0)

Показать ответ
Ответ:
vika36voronezhskaya
vika36voronezhskaya
07.08.2020 08:32
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
0,0(0 оценок)
Ответ:
никита3427
никита3427
06.08.2022 22:59

Объяснение:Находим критические точки данной функции.

Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.

у' = (-х^2 + 6х + 7)' = -2x + 6.

-2x + 6 = 0;

2x = 6;

x = 6 / 2 = 3.

Следовательно, точка х = 3 является критической точкой данной функции.

Находим значение второй производной данной функции в точке х = 3.

у'' = (-2x + 6)' = -2.

Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.

Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).

ответ: данная функция убывает на промежутке (3; +∞).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота